Thrombin Mutant W215A/E217A Treatment Improves Neurological Outcome and Reduces Cerebral Infarct Size in a Mouse Model of Ischemic Stroke

Michelle A. Berny-Lang, PhD*; Sawan Hurst, MS*; Erik I. Tucker, PhD; Leslie A. Pelc, MS; Ruikang K. Wang, PhD; Patricia D. Hurn, PhD; Enrico Di Cera, MD; Owen J.T. McCarty, PhD; András Gruber, MD

Background and Purpose—Treatment of ischemic stroke by activation of endogenous plasminogen using tissue plasminogen activator is limited by bleeding side effects. In mice, treatment of experimental ischemic stroke with activated protein C improves outcomes; however, activated protein C also has bleeding side effects. In contrast, activation of endogenous protein C using thrombin mutant W215A/E217A (WE) is antithrombotic without hemostasis impairment in primates. Therefore, we investigated the outcome of WE-treated experimental ischemic stroke in mice.

Methods—The middle cerebral artery was occluded with a filament for 60 minutes to induce ischemic stroke. Vehicle, recombinant WE, or tissue plasminogen activator was administered during middle cerebral artery occlusion or 2 hours after middle cerebral artery occlusion. Neurological performance was scored daily. Intracranial bleeding and cerebral infarct size, defined by 2,3,5-triphenyltetrazolium chloride exclusion, were determined on autopsy. Hemostasis was evaluated using tail bleeding tests.

Results—WE improved neurological performance scores, increased laser Doppler flowmetry-monitored post-middle cerebral artery occlusion reperfusion of the parietal cortex, and reduced 2,3,5-triphenyltetrazolium chloride-defined cerebral infarct size versus vehicle controls. However, unlike tissue plasminogen activator, WE did not increase tail bleeding or intracranial hemorrhage.

Conclusions—WE treatment is neuroprotective without hemostasis impairment in experimental acute ischemic stroke in mice and thus may provide an alternative to tissue plasminogen activator for stroke treatment. (Stroke. 2011;42:1736-1741.)

Key Words: antithrombotics ▪ ischemic stroke ▪ thrombin ▪ thrombolysis

Early thrombolysis with recombinant human tissue plasminogen activator (tPA) is currently the only Food and Drug Administration-approved causal treatment for acute ischemic stroke. Through enzymatic induction of endogenous plasmin-catalyzed fibrinolysis, tPA treatment promotes reperfusion and improves long-term clinical outcomes. However, tPA increases the incidence of intracerebral hemorrhage and may have neurotoxic effects in experimental stroke.2–4

Experimental data suggest that the use of recombinant activated protein C (APC), which inhibits activated factors V and VIII, improves stroke outcomes.5,6 Beyond its anticoagulant activity, APC therapy is vasculoprotective and neuroprotective, and it helps to maintain the integrity of the blood–brain barrier; however, systemic APC administration also can impair hemostasis.6,11 Potentially safer alternatives to recombinant APC administration include the use of innovative APC mutants with reduced anticoagulant activity or the direct activation of endogenous protein C by thrombin in vivo.

The essential serine protease thrombin catalyzes site-specific procoagulant and anticoagulant events.12 Low doses of infused thrombin are antithrombotic through activation of endogenous protein C; however, thrombin also has concurrent prothrombotic effects.13 Alanine scanning studies identified several key residues involved in thrombin substrate specificity,14,15 and thrombin analogs with reduced procoagulant activity have been designed. The thrombin mutant W217A/E217A (WE) has significantly reduced catalytic activity toward fibrinogen and protease-activated receptors but retains activity toward protein C in the presence of thrombomodulin.16 WE treatment is as antithrombotic as interventional doses of low-molecular-weight heparin or APC, but without significant hemostasis impairment in baboons.17,18
Based on the observed dissociation of antithrombotic and antihemostatic effects of WE in primates, we hypothesized that WE administration may provide a safe approach to early treatment of stroke. We therefore investigated the effect of WE administration in a murine middle cerebral artery occlusion (MCAO) model of acute ischemic stroke.

Materials and Methods

Mouse Model of Acute Ischemic Stroke

Animal experiments were approved by the Institutional Animal Care and Use Committee. Three month-old male C57Bl/6 mice (Charles River Laboratories, Madison, WI) weighing 21 to 27 grams were anesthetized with 5.0% isoflurane. Anesthesia was maintained with 1.0 to 1.5% isoflurane in 37% oxygen. Rectal temperature was maintained at 37.0°C±0.5°C. A laser Doppler flowmetry (LDF) probe (Moor Instruments Ltd) was secured over the right parietal bone to monitor focal changes of cortical perfusion. Ischemic stroke was induced by surgical deployment of a silicone-coated (Xantopren Comfort Light and hardener mix; Heraeus), heat-blunted 6-nylon filament through the right external carotid artery to achieve MCAO, as described. The beginning of focal cerebral ischemia was defined as a decrease in LDF signal to <20% of the pre-MCAO baseline. After 60 minutes, the filament was removed and reperfusion was monitored with LDF. In selected experiments, extensive perfusion deficit of the affected hemisphere during MCAO was verified with optical microangiography, as described.

Treatment of Stroke

Recombinant human WE was prepared by site-directed mutagenesis, as described. Recombinant human tPA, Alteplase (Activase; Genentech), was purchased. Treatments were randomly assigned and administered, either during cerebral ischemia (before filament removal) or during reperfusion, 2 hours after removal of the filament from the MCA. For treatment during occlusion, single bolus vehicle (physiological saline with 2.5% dextrose), WE (25 μg/kg), or tPA (2.5 mg/kg) were administered in 185 μL volume through the isolated right femoral vein after 15 minutes of sustained ischemia as defined by LDF. For treatments administered 2 hours after MCAO, animals received a 45-minute intravenous infusion of 185 μL of vehicle, WE (25 μg/kg), or tPA (10 mg/kg). The bolus and infusion doses of tPA and WE were selected on the basis of previous studies in mice and primates.

Neurological Evaluation

After MCAO and treatment administration, mice were allowed to recover and neurological deficit was assessed the next day. Neurological performance scores were assessed daily using a modified 5-point Hara scale (0, no neurological signs; 1, flexion of the contralateral torso; 2, circling to the contralateral side but normal posture at rest; 3, leaning to the contralateral side at rest; 4, no spontaneous motor activity; 5, death). Scores were ranked from 0 to 5 at intervals of 0.5; animals demonstrating neurological signs between 2 categories were given an intermediate score.

Brain Analysis

After neurological scoring, animals were euthanized and brains were harvested and sectioned into 2-mm coronal sections. Sections were inspected for the presence of macroscopic intracranial hemorrhage, then stained with 1.2% 2,3,5-triphenyltetrazolium chloride (TTC) for 20 minutes (37°C), fixed with 10% formalin, and evaluated for infarct size by morphometric analysis (MCID software; InterFocus Imaging Ltd) as described. The TTC exclusion area of the ipsilateral (ischemic) hemisphere was measured, and the total TTC exclusion volume was expressed as a percentage of the contralateral (nonischemic) hemisphere to represent the TTC-defined infarct volume. Edema was indirectly calculated from morphometric data as the percent increase in size of the ipsilateral hemisphere over the contralateral hemisphere.

Evaluation of Hemostasis

Naive mice (C57Bl/6; 19–34 grams) were used for hemostasis assessment using the tail transection test as described. Anesthetized mice were administered 185 μL of vehicle (saline), WE (25 μg/kg), or tPA (2.5 mg/kg) intravenously. Tail transection (at 1.5 mm tail diameter) was performed 15 minutes after the end of vehicle, WE, or tPA administration, and the bleeding time (visual observation) and total volume of blood loss were recorded.

For activated partial thromboplastin time (APTT) and thrombin time tests, mice were euthanized after administration of vehicle, WE, or tPA, and blood was drawn by cardiac puncture into 3.2% sodium citrate (9:1, vol:vol). Plasma was prepared by centrifugation of blood for 3 minutes at 15 700g. Clotting and clot lysis times were measured with a KC4 coagulation analyzer (Trinity Biotech). APTT measurements were performed at 10±1 and 60±5 minutes after the blood draw using the APTT-ES kit from Helena Laboratories. Thrombin time measurements were performed at 10.5±1 minutes after the blood draw, with bovine thrombin (Sigma-Aldrich) added to plasma at a final concentration of 5 U/mL.

Statistical Analysis

Data are presented as mean±SEM. Statistical significance between means was determined by 1-way ANOVA with the Tukey post hoc test (for 3 conditions) or the Student t test (for 2 conditions). Statistical significance for hemorrhage rates was determined by the Kruskal-Wallis test and for survival curves by the log-rank test. Significance for all statistical tests required P<0.05.

Results

WE Is Neuroprotective in a Mouse Model of MCAO-Induced Ischemic Stroke

To visualize the extensive ischemia of the parietal region induced by MCAO, we performed optical microangiography imaging of animals that received a bolus of vehicle, WE (25 μg/kg), or tPA (2.5 mg/kg). Images obtained before MCAO, during MCAO, and after MCAO were consistent with LDF probe data (Table 1), confirming that blood perfusion of the affected hemisphere was significantly decreased during MCAO (Figure 1).

Table 1. Parietal Laser Doppler Flowmetry During and After Middle Cerebral Artery Occlusion

<table>
<thead>
<tr>
<th>Treatment</th>
<th>n</th>
<th>% Baseline LDF During MCAO</th>
<th>% Baseline LDF After MCAO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>5</td>
<td>8.7±1.6</td>
<td>35.4±13.0</td>
</tr>
<tr>
<td>WE</td>
<td>5</td>
<td>9.3±1.1</td>
<td>73.5±2.7*</td>
</tr>
<tr>
<td>tPA</td>
<td>9</td>
<td>10.1±1.5</td>
<td>69.9±1.9*</td>
</tr>
</tbody>
</table>

LDF was continuously recorded during cerebral ischemia and reperfusion. Start of MCAO was defined as stable signal for 5 minutes after decrease of pre-MCAO LDF to 20% or less of baseline. Reperfusion LDF values after 15 minutes of reperfusion after removal of the filament are shown. Values are mean±SEM. LDF indicates laser Doppler flowmetry; MCAO, middle cerebral artery occlusion; tPA, tissue plasminogen activator; WE, W215A/E217A.

*P<0.05 vs vehicle.

To evaluate the neurological outcomes of WE treatment of acute ischemic stroke, animals were administered vehicle, WE (25 μg/kg), or tPA (2.5 mg/kg) during cerebral ischemia. Performance scores on a modified Hara scale, assessed 24 hours after the MCAO procedure, were significantly better for WE-treated mice than for vehicle-treated or tPA-treated animals (Figure 2A).
WE Reduces Infarct Size After Cerebral Ischemia

On morphometric analysis, the relative volume of TTC-defined infarction of the affected hemisphere was significantly smaller in both WE-treated and tPA-treated (26/4% and 36/5%, respectively) than in vehicle-treated (56/3%) mice, suggesting neuroprotection by both enzymes (Figure 2). No differences in the relative increase in size of the infarcted hemisphere (interpreted as edema) were observed between treatments (data not shown).

Effects of WE on Cortical Reperfusion After MCAO

Infusion of tPA can support the breakdown of blood clots, increase reperfusion of ischemic regions, and lead to a reduction in infarct size in ischemic stroke. To determine whether the reduction in TTC-defined infarct size seen with WE treatment was also associated with an increase in LDF-defined reperfusion, we recorded cortical perfusion with LDF 15 minutes after removal of the intraluminal filament. Perfusion of the parietal cortex of both WE-treated and tPA-treated animals was restored to ~70% of the baseline (before MCAO) LDF perfusion (Table 1). Reperfusion values after MCAO were significantly lower in vehicle-treated mice averaging 35% of pre-MCAO baseline.

WE Treatment After MCAO Improves Neurological Outcome

To evaluate the efficacy of WE administration after MCAO, we infused vehicle, WE (25 μg/kg), or tPA (10 mg/kg) 2 hours after removal of the filament and monitored neurological deficits and survival for 1 week. On neurological assessment on days 3 to 7 after MCAO, performance scores in both WE-treated and tPA-treated mice were significantly better than in vehicle-treated mice (Figure 3A). Both WE-treated and tPA-treated mice showed significant improvement in neurological scores over the 7 days of observation, whereas neurological scores in vehicle-treated mice were unchanged (Figure 3A). Survival curves of WE-treated animals trended toward an increase in survival beyond vehicle-treated animals ($P=0.06$; Figure 3B). Therefore, administration of WE after MCAO improves neurological function over 7 days and may lead to an increased survival benefit.

WE Treatment Does Not Impair Hemostasis

Hemostasis impairment tests were used to assess treatment safety. On autopsy, brain sections were examined for the presence of macroscopic intracranial hemorrhage. No instance of visible hemorrhage was observed in vehicle-treated animals (0/12). Macroscopic hemorrhage was seen in 14% (2/14) of mice treated with WE; there was no statistical difference from vehicle treatment. Macroscopic intracranial hemorrhage was observed in 44% (7/16) of mice that received tPA ($P=0.006$ versus vehicle).

The effect of WE (25 μg/kg) on murine hemostasis was evaluated 15 minutes after administration. Tail bleeding times in WE-treated mice were comparable to vehicle-treated mice (Figure 4A). In contrast, tPA (2.5 mg/kg) significantly prolonged tail bleeding time in comparison to both vehicle and WE treatment. Further, the blood volume loss from tPA-treated mice was >3-fold greater than the blood loss from vehicle-treated or WE-treated mice (Figure 4B).

No significant prolongation of APTT was observed for WE-treated or tPA-treated animals (Table 2), although a transient increase of APTT was observed after the administration of 10-fold higher doses of WE (data not shown), consistent with anticoagulant concentrations of endogenous APC in the circulation, as seen in primates after WE administration. To examine the effects of WE and tPA on fibrinolysis, the plasma clot lysis time was recorded after APTT measurements. In plasma from tPA-treated mice, APTT clots lysed in 82.4±3.1 seconds, whereas no lysis was observed over a 240-second period of observation with vehicle or WE treatment. No differences in plasma thrombin times were observed in vehicle-treated, WE-treated, or tPA-treated animals (Table 2). These data suggest that adminis-

Figure 1. Optical microangiography (OMAG) of the cerebral cortex verifies extensive cortical hypoperfusion during and after middle cerebral artery occlusion (MCAO). Transcranial noninvasive OMAG was used to image the brains of mice through intact skull before MCAO, during MCAO, and after MCAO. Bright areas indicate perfused vessels (moving blood) and dark regions indicate absence or reduction of perfusion. IPA indicates tissue plasminogen activator; WE, W215A/E217A.

WE Reduces Infarct Size After Cerebral Ischemia

On morphometric analysis, the relative volume of TTC-defined infarction of the affected hemisphere was significantly smaller in both WE-treated and tPA-treated (26±4% and 36±5%, respectively) than in vehicle-treated (56±3%) mice, suggesting neuroprotection by both enzymes (Figure 2). No differences in the relative increase in size of the infarcted hemisphere (interpreted as edema) were observed between treatments (data not shown).

Effects of WE on Cortical Reperfusion After MCAO

Infusion of tPA can support the breakdown of blood clots, increase reperfusion of ischemic regions, and lead to a reduction in infarct size in ischemic stroke. To determine whether the reduction in TTC-defined infarct size seen with WE treatment was also associated with an increase in LDF-defined reperfusion, we recorded cortical perfusion with LDF 15 minutes after removal of the intraluminal filament. Perfusion of the parietal cortex of both WE-treated and tPA-treated animals was restored to ~70% of the baseline (before MCAO) LDF perfusion (Table 1). Reperfusion values after MCAO were significantly lower in vehicle-treated mice averaging 35% of pre-MCAO baseline.

WE Treatment After MCAO Improves Neurological Outcome

To evaluate the efficacy of WE administration after MCAO, we infused vehicle, WE (25 μg/kg), or tPA (10 mg/kg) 2 hours after removal of the filament and monitored neurological deficits and survival for 1 week. On neurological assessment on days 3 to 7 after MCAO, performance scores in both WE-treated and tPA-treated mice were significantly better than in vehicle-treated mice (Figure 3A). Both WE-treated and tPA-treated mice showed significant improvement in neurological scores over the 7 days of observation, whereas neurological scores in vehicle-treated mice were unchanged (Figure 3A). Survival curves of WE-treated animals trended toward an increase in survival beyond vehicle-treated animals ($P=0.06$; Figure 3B). Therefore, administration of WE after MCAO improves neurological function over 7 days and may lead to an increased survival benefit.

WE Treatment Does Not Impair Hemostasis

Hemostasis impairment tests were used to assess treatment safety. On autopsy, brain sections were examined for the presence of macroscopic intracranial hemorrhage. No instance of visible hemorrhage was observed in vehicle-treated animals (0/12). Macroscopic hemorrhage was seen in 14% (2/14) of mice treated with WE; there was no statistical difference from vehicle treatment. Macroscopic intracranial hemorrhage was observed in 44% (7/16) of mice that received tPA ($P=0.006$ versus vehicle).

The effect of WE (25 μg/kg) on murine hemostasis was evaluated 15 minutes after administration. Tail bleeding times in WE-treated mice were comparable to vehicle-treated mice (Figure 4A). In contrast, tPA (2.5 mg/kg) significantly prolonged tail bleeding time in comparison to both vehicle and WE treatment. Further, the blood volume loss from tPA-treated mice was >3-fold greater than the blood loss from vehicle-treated or WE-treated mice (Figure 4B).

No significant prolongation of APTT was observed for WE-treated or tPA-treated animals (Table 2), although a transient increase of APTT was observed after the administration of 10-fold higher doses of WE (data not shown), consistent with anticoagulant concentrations of endogenous APC in the circulation, as seen in primates after WE administration. To examine the effects of WE and tPA on fibrinolysis, the plasma clot lysis time was recorded after APTT measurements. In plasma from tPA-treated mice, APTT clots lysed in 82.4±3.1 seconds, whereas no lysis was observed over a 240-second period of observation with vehicle or WE treatment. No differences in plasma thrombin times were observed in vehicle-treated, WE-treated, or tPA-treated animals (Table 2). These data suggest that adminis-
tration of WE did not significantly interfere with the hemo-

cosmosis of mice.

Discussion

We evaluated the efficacy and safety of WE treatment of
MCAO-induced ischemic stroke in mice. Our data show that
WE administration during MCAO improved neurological
outcomes and reduced TTC-defined infarct size 24 hours
after induction of ischemic stroke, with an efficacy that was
comparable to tPA. Moreover, WE treatment 2 hours after
MCAO also improved neurological performance over 1 week
of observation.

Our information about the pathomechanism of progressive
cerebral infarctions and ischemic stroke induced by surgical
placement of the filament into the MCA in our model remains
limited. The reduced LDF after MCAO reperfusion in
vehicle-treated mice could have various explanations, ranging
from distal plugs attributable to denudation of the endotheli-
um during introduction of the filament, vasospasm, or pro-
gressive distal thrombosis attributable to ischemic endothelial
injury. As measured by LDF, significant reperfusion benefit
achieved by both a thrombolytic (tPA) and an antithrombotic
(WE) agent is suggestive of the formation of distal throm-

Figure 2. W215A/E217A (WE) treatment during
middle cerebral artery occlusion (MCAO) improves neurological performance scores and
reduces infarct size. Mice were administered
vehicle, WE (25 μg/kg), or tissue plasmingen
activator (tPA; 2.5 mg/kg) during MCAO. A, Neurological deficits were scored 24 hours
after MCAO. After scoring, autopsy was per-
formed and brain sections were stained with
2,3,5-triphenyltetrazolium chloride (TTC). B, Images of the sections were analyzed by mor-
phometric analysis to determine the percentage
of TTC-defined infarcted tissue. C, Representa-
tive images of brain sections show the pres-
ence of TTC-defined infarct (lighter areas) and
viable tissue (darker areas). Values are
mean±SEM, n=16–20. *P<0.05 vs vehicle

treatment. #P<0.05 vs tPA.

Figure 3. W215A/E217A (WE) treatment after middle cerebral
artery occlusion (MCAO) improves 7-day neurological scores.
Mice were infused with vehicle, WE (25 μg/kg), or tissue plasminogen
activator (tPA; 10 mg/kg) 2 hours after MCAO. A, Neuro-
logical deficits were scored daily for 1 week beginning at 24
hours after MCAO (day 1). Values are mean±SEM, n=10.
*P<0.05 vs vehicle. #P<0.05 vs corresponding treatment at day
1. B, Animal survival was tracked for 1 week after MCAO and
treatment.

Figure 4. W215A/E217A (WE) treatment does not increase
bleeding time and blood loss. Anesthetized mice were adminis-
tered a bolus of vehicle, WE (25 μg/kg), or tissue plasminogen
activator (2.5 mg/kg). Tails were transected when the diameter
reached 1.5 mm and placed in a tube of water. The time until
cessation of bleeding (A) and total blood loss volume (B) were
recorded. Mean bleeding times are indicated by the bold hori-
zontal lines in A. Values are mean±SEM *P<0.05 vs vehicle.
#P<0.05 vs WE.
Effects in experimental ischemic stroke.\textsuperscript{5,7–9} The neurological APC is directly cytoprotective, exerting neuroprotective effects in vivo.\textsuperscript{24} Enzymatic activity is restored in the presence of thrombomodulin and, because protein C is a natural substrate for the complex, the mutant effectively generates APC in vitro as well as in vivo.\textsuperscript{16,17,25} In addition to anticoagulant properties, APC is directly cytoprotective, exerting neuroprotective effects in experimental ischemic stroke.\textsuperscript{5,7–9} The neurological outcome benefit observed with WE treatment of stroke may have resulted from neuroprotective effects of the intravascular generation of endogenous APC.

Although systemic administration of APC is neuroprotective in this model, circulating APC can disrupt hemostasis.\textsuperscript{6,11} As an alternative to using the native enzyme, APC variants with reduced anticoagulant activity have been engineered to exploit the antiapoptotic activity of the enzyme. In a mouse model of ischemic stroke, variant 3K3A-APC, with reduced thrombin times were measured at 10.0 ± 1.0 and 10.5 ± 1.0 minutes, respectively, after the blood draw. Values are mean ± SEM from 5 to 6 experiments. APTT indicates activated partial thromboplastin time; tPA, tissue plasminogen activator; WE, W215A/E217A.

Table 2. Plasma Activated Partial Thromboplastin Time and Thrombin Time Measurements After Administration of Vehicle, W215A/E217A, or Tissue Plasminogen Activator

<table>
<thead>
<tr>
<th>Treatment</th>
<th>APTT (s)</th>
<th>Thrombin Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>25.2 ± 0.9</td>
<td>13.6 ± 0.5</td>
</tr>
<tr>
<td>WE</td>
<td>26.2 ± 1.1</td>
<td>14.7 ± 0.6</td>
</tr>
<tr>
<td>tPA</td>
<td>27.8 ± 0.8</td>
<td>13.3 ± 0.4</td>
</tr>
</tbody>
</table>

Anesthetized mice were administered a bolus of vehicle, WE (25 μg/kg), or tPA (2.5 mg/kg). Fifteen minutes after administration, blood was drawn into sodium citrate and plasma prepared by centrifugation. Plasma APTT and thrombin times were measured at 10.0 ± 1.0 and 10.5 ± 1.0 minutes, respectively, after the blood draw. Values are mean ± SEM from 5 to 6 experiments.

Sources of Funding
This work was supported in part by National Institutes of Health grants EB009682 (R.K.W., HL093140 (R.K.W., A.G.), HL049413, HL058814, HL073813 (E.D.C.), R01HL101972 (O.J.T.M., A.G.), and HL095315 (A.G., E.I.T.), a Collins Medical Trust award (O.J.T.M., A.G.), American Heart Association awards 09PRE2230117 (M.A.B.), 0855733G (R.K.W.), 09GRNT2150003 (O.J.T.M.), and 0850056Z (A.G., E.I.T.), and an unrestricted grant from Bayer Schering Pharma (A.G., E.I.T.).

Disclosures
A.G., E.I.T., and Oregon Health & Science University (OHSU) have a significant financial interest in ARONORA, LLC, a company that may have a commercial interest in the result of this research. This potential conflict of interest has been reviewed and managed by the OHSU Conflict of Interest in Research Committee. M.A.B. is a Whitaker and ARCS scholar.

References


