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Abstract. Serine peptidases play key roles in human
health and disease and their biochemical properties
shaped the molecular evolution of these processes. Of
known proteolytic enzymes, the serine peptidase
family is the major cornerstone of the vertebrate
degradome. We describe the known diversity of serine
peptidases with respect to structure and function.

Particular emphasis is placed on the S1 peptidase
family, the trypsins, which underwent the most pre-
dominant genetic expansion yielding the enzymes
responsible for vital processes in man such as diges-
tion, blood coagulation, fibrinolysis, development,
fertilization, apoptosis and immunity.
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Introduction

Proteolytic enzymes act as positive or negative
effectors of numerous biological processes either as
nonspecific catalysts of protein degradation or highly
selective agents controlling physiological events [1].
Many biological pathways involving peptidase activity
have been characterized and a wealth of information is
available. However, much work remains to define the
diversity of proteolytic events in biological systems
and their spatial and temporal distribution in health
and disease. Five classes of proteolytic enzymes are
recognized on the basis of their catalytic mechanism:
aspartic, cysteine, metallo-, threonine and serine
peptidases [2]. With the advent of whole genome
sequencing this classification system has expanded by
necessity to encompass the diverse catalytic repertoire
found in nature.
Barrett and Rawlings have devised a classification
scheme based on statistically significant similarities in

sequence and structure of all known proteolytic
enzymes and term this database MEROPS [3]. The
classification system divides peptidases into clans
based on catalytic mechanism and families on the
basis of common ancestry. At present, over 66 000
peptidase protein sequences have been classified into
50 clans and 184 families (MEROPS release 7.90).
Over 26 000 serine peptidases are grouped into 13
clans and 40 families. In general, structural models are
known for only a handful of representatives within
each family of enzymes. Serine peptidases are widely
distributed in nature and found in all kingdoms of
cellular life as well as many viral genomes. However,
significant differences exist in the distribution of each
clan across species. For example, clan PA peptidases
are highly represented in eukaryotes, but rare con-
stituents of prokaryotic and plant genomes limited to
intracellular protein turnover. Vertebrates boast an
array of clan PA peptidases responsible for a variety of
extracellular processes. SB and SC clans are most
represented in other organisms. Most serine pepti-
dases are endopeptidases where bond hydrolysis
occurs in the middle of a polypeptide chain. However,* Corresponding author.
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several families of exopeptidases have been described
that remove one or more amino acids from the
terminus of a polypeptide.
Over one third of all known proteolytic enzymes are
serine peptidases. The family name stems from the
nucleophilic Ser amino acid residue in the enzyme
active site, which attacks the carbonyl moiety of the
substrate peptide bond to form an acyl-enzyme
intermediate [4]. Nucleophilicity of the catalytic Ser
is typically dependent on a catalytic triad of Asp, His
and Ser residues, commonly referred to as the charge
relay system. The triad was first observed by Blow
over 30 years ago in the structure of chymotrypsin [5].
Combination of these three residues with identical
structural configuration is known in four distinct
three-dimensional protein folds that catalyze hydrol-
ysis of peptide bonds, suggesting four different evolu-
tionary origins. Examples of these folds are observed
in trypsin, subtilisin, prolyl oligopeptidase, and ClpP
peptidase. A number of other enzyme families,
including asparaginases, esterases, acylases, and b-
lactamases utilize an identical catalytic triad to gen-
erate a strong nucleophile [6]. Many serine peptidases
employ a simpler dyad mechanism where Lys or His is
paired with the catalytic Ser. Other serine peptidases
mediate catalysis via novel triads of residues, such as a
pair of His residues combined with the nucleophilic
Ser. In nearly all cases, the active site Ser can be
rendered inactive by generic inhibitors such as diiso-
propylfluorophosphate and phenylmethanesulfonyl
fluoride.
A summary of catalytic units in all serine peptidase
families, primary specificity and the fold that harbors
them is provided in Table 1. Here we provide an

overview of each clan of serine peptidases. Due to the
breadth of the topic, we refer the reader to the
MEROPS database (http://merops.sanger.ac.uk/) and
original sources for a more detailed description of the
impressive diversity of serine peptidase structure,
function, and activity.

The degradome

A typical genome contains 2 – 4% of genes encoding
for proteolytic enzymes [7]. The entire complement of
peptidases present within a genome is referred to as
the degradome [8]. Degradome composition varies
greatly between kingdoms of life with surprisingly
little apparent variation in subkingdoms and their
phyla. Within the metazoan lineage, a select subset of
peptidase families underwent significant gene dupli-
cation and divergence. In particular, four peptidase
families account for over 40% of the human degra-
dome (Fig. 1). These are: (i) the ubiquitin-specific
peptidases (clan CA family C19) responsible for
regulated intracellular protein turnover [9]; (ii) the
Zn-dependent adamalysins (clan MA family M12
subfamily B), which are gaining increasing interest for
their role in the control of growth factors and integrin
function [10]; (iii) prolyl oligopeptidases (clan SC
family S9), which cleave small peptides whose identity
remain elusive for the most part [11]; and (iv) the
trypsin-like serine peptidases (clan PA family S1
subfamily A), which are the largest group of homol-
ogous peptidases in the human genome responsible
for numerous biological processes. Similar degradome
composition is observed in all vertebrates, indicating

Table 1. Known diversity of serine peptidase structure and catalytic mechanism.

Clan Families Representative member Fold Catalytic residues # Primary specificity PDB

PA 12* Trypsin Greek-key b-barrels His, Asp, Ser 195 A, D, F, G, K, Q, R, W, Y 1DPO

SB 2 Subtilisin, sedolisin 3-layer sandwich Asp, His, Ser 221 F, W, Y 1SCN

SC 2 Prolyl oligopeptidase a/b hydrolase Ser, Asp, His 554 G, P 1QFS

SE 6 D-Ala–D-Ala carboxypeptidase a-helical bundle Ser, Lys 62 D-A 3PTE

SF 3 LexA peptidase all b Ser, Lys/His 119 A 1JHH

SH 2 Cytomegalovirus assemblin a/b Barrel His, Ser, His 132 A 1LAY

SJ 1 Lon peptidase a+b Ser, Lys 679 K, L, M, R, S 1RR9

SK 2 Clp peptidase ab Ser, His, Asp 97 A 1TYF

SP 3 Nucleoporin all b His, Ser na F 1KO6

SQ 1 Aminopeptidase DmpA 4-layer sandwich Ser 250 A, G, K, R 1B65

SR 1 Lactoferrin 3-layer sandwich Lys, Ser 259 K, R 1LCT

SS 14 L,D-Carboxypeptidase b-sheet+b-barrel Ser, Glu, His 115 K 1ZRS

ST 5 Rhomboid a-barrel His, Ser 201 D, E 2IC8

A variety of catalytic units have arisen to assist the requisite nucleophilic Ser. #= residue acting as nucleophile. *Seven additional families
in clan PA of viral origin apply a nucleophilic Cys to mediate bond hydrolysis.
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that expansion of these peptidase families occurred
prior to emergence of the lineage roughly 450 million
years ago. Of 699 peptidases in man, 178 are serine
peptidases and 138 of them belong to the S1 peptidase
family. Abundance of S1 peptidases suggests the
protein fold presents a selective advantage relative
to other peptidases. The chymotrypsin-like fold of the
S1 peptidase family presents an ideal platform en-
abling catalytic efficiency, substrate selectivity, and
multiple levels of regulation in a package that is
readily combined with associated protein domains
(see below). On the basis of these features, S1
peptidases form the major constituent of the degra-
dome web of complex biological systems [7]. How-
ever, expansion of the clan PA peptidases occurred
only in eukaryotic organisms. Clans SB and SC are the
dominant serine proteases of archaea, prokaryotes,
plants, and fungi.

Clan SB peptidases

Clan SB peptidases are prevalent in plant and
bacterial genomes with few representatives in a
given animal genome. However, these proprotein
convertases are vital for protein processing in all
metazoa [12]. The archetype of clan SB is subtilisin.
Subtilisin was originally discovered in the gram-
positive bacterium Bacillus subtilis and, like chymo-
trypsin, was one of the earliest protein crystal
structures determined [13]. Remarkably, the catalytic
Asp, His, Ser triad exists in the exact geometric
organization observed in clan PA peptidases, yet the
surrounding protein fold bears no similarity (Fig. 2).
Clan SB also contains a second family of peptidases
S53, the sedolisins. In these peptidases, the His general
base is substituted by a Glu residue and the tetrahe-
dral intermediate stabilized by a negatively charged

carboxyl group from an Asp residue rather than
through partial positive charges [14]. The sedolisins
are active at low pH. Subtilisins have proven ex-
tremely useful for protein engineering studies. Sub-
strate selectivity, thermal stability, cold adaptation,
stability in non-aqueous solvents, fluoride activation,
and ability to act as a peptide ligase have all been
introduced into subtilisin through rational mutagen-
esis and directed evolution approaches [15]. Many of
the engineering studies on subtilisin have led to
greatly improved cleaning agents for use in laundry
detergent.

Figure 1. The human degra-
dome. Of 183 different peptidase
families, only four underwent
significant gene duplication and
divergence to form the basis of
the majority of proteolytic activ-
ity in all human cells and fluids.
Of the four families, the S1 fam-
ily emerged to form the largest
homologous group within the
genome and is responsible for
key extracellular processes such
as hemostasis, development, an-
giogenesis, apoptosis, immunity,
and cell signaling.

Figure 2. Subtilisin Carlsberg (PDB ID 1SCN) from clan SB
bound to an inhibitor (yellow). The catalytic triad (sticks) is
supported by a seven-stranded b-sheet sandwiched between two
layers of a-helices
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Physiological function of clan SB peptidases tends to
be nutrition oriented with select roles in protein
processing. Most clan SB peptidases prefer to hydro-
lyze substrates on the C-terminal side of large hydro-
phobic residues. However, proprotein-processing
peptidases such as kexin and furin cleave following a
pair of dibasic residues [16, 17]. The substrate-binding
pocket of subtilisin has been amenable to protein
engineering to yield novel substrate selectivity pro-
files, which contrasts the limited selectivity of clan PA
peptidases. Most clan SB peptidases are secreted
outside of the cell or localized to the cell membrane. A
notable exception is the tripeptidyl-peptidases re-
sponsible for intracellular protein turnover [18].
Within the human genome, ten clan SB peptidases
have been identified, nine belong to the S8 family and
only one from the S53 family. Although well known
for their role in processing proteins along the secretion
pathway [19, 20], new roles for proprotein convertases
are emerging [21]. Proprotein convertase subtilisin-
like kexin type 9 (PCSK9) was recently demonstrated
to regulate the level of low-density lipoprotein (LDL)
receptor in the liver and, in turn, the level of LDL in
plasma [22]. Mutations that increase PCSK9 activity
are associated with hypocholesterolemia and coro-
nary heart disease. Therefore, inactivation of PCSK9
through small molecule therapeutics presents a novel
target for reducing LDL levels and coronary heart
disease. Tripeptidyl-peptidase I (TPP-I) is the sole
representative from family S53 in the human genome
[23] and one of many lysosomal peptidases respon-
sible for protein turnover [24]. TPP-I removes three
amino acids from the N terminus of small peptides.
Mutations in TPP-I are associated with infantile
neuronal ceroid lipofuscinosis (Batten disease), the
most common neurodegenerative disorder in chil-
dren, which is characterized by intracellular accumu-
lation of autofluorescent lipopigments [25, 26].

Clan SC peptidases

Clan SC peptidases are a/b hydrolase-fold enzymes
consisting of parallel b-strands surrounded by a-
helices (Fig. 3). The a/b hydrolase-fold provides a
versatile catalytic platform that in addition to proteo-
lytic activity can act as an esterase, lipase, dehaloge-
nase, haloperoxidase, lyase, or epoxide hydrolase [27].
Catalytic amenability of the a/b hydrolase-fold may
underlie why clan SC peptidases are the second largest
family of serine peptidases in the human genome.
Other mechanistic classes need not use the catalytic
Ser and instead use Cys or Glu [28]. Clan SC
peptidases present an identical geometry to the
catalytic triad observed in clans PA and SB ordered

differently in the polypeptide sequence. Substrate
selectivity arises from the a-helices that surround the
central b-sheet core, whose curvature may also
influence enzyme-substrate interactions [29]. Within
clan SC, carboxypeptidases from family S10 are
unique for their ability to maintain catalytic activity
in acidic environments. Nearly all serine peptidases
have activity restricted within the range of neutral to
alkaline pH. Many clan SC peptidases hydrolyze
substrates on the C-terminal side of a Pro residue with
several exceptions. Both endoproteolytic and exopro-
teolytic activities are present in clan SC, which
contrasts the trend in other serine peptidase families
in which members are predominantly one or the other.
For examples of differing selectivity in clan SC, prolyl
oligopeptidase from family S9 cleaves peptide bonds
within peptides and prolyl aminopeptidase from
family S33 removes N-terminal Pro and hydroxypro-
line residues from peptides [11]. Substrate selectivity
for peptides shorter than 30 amino acids in length is
derived from the two-domain architecture. An N-
terminal seven-bladed propeller restricts access to the
C-terminal a/b hydrolase domain, thus restricting size
of substrate to approximately 30 amino acids in length
[30, 31]. On the basis of their selectivity toward
smaller peptides and not full-length proteins, clan SC
peptidases are thought to be particularly important in
cell signaling mechanisms.

In humans, clan SC peptidases are often associated
with Pro-specific N-terminal processing of peptides
and proteins, yet many present a non-proteolytic
function. S9 is the largest family of clan SC peptidases

Figure 3. Prolyl oligopeptidase (PDB ID 1QFS) from clan SC
bound to an inhibitor (yellow) presents a two-domain architecture
with an N-terminal eight-bladed b-propeller that restricts access to
the protease active site (sticks) contained in the C-terminal a/b
hydrolase domain.
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trypsin-like substrate selectivity for Arg side chains,
yet many viral or bacterial members of the family are
specific for Gln. The striking difference in the
mechanism by which substrate selectivity is achieved
in the two subfamilies of clan PA (S1A and S1B), yet
their conserved presence in bacteria to man, highlights
a deep evolutionary tree whose expansion is intimate-
ly tied into critical processes that underpin vertebrate
biology. S1A and S1B are phylogenetically distinct
groups of enzymes, yet share a common two b-barrel
architecture. The S1B peptidases are found in all
cellular life and are responsible for intracellular
protein turnover. In contrast, the S1A peptidases are
the trypsins that mediate a variety of extracellular
processes. S1A peptidases have a limited distribution
in plants, prokaryotes and the archaea. Nearly all clan
PA peptidases utilize the canonical catalytic triad, but
a few family members of viral origin use an active site
thiol from a Cys residue [61]. Catalysis is furthered by
an H-bond between Asp-102 and His-57 (chymotryp-
sin numbering), which facilitates the abstraction of the
proton from Ser195 and generates a potent nucleo-
phile [4, 62, 63]. Some controversy exists over whether
this H-bond can be described as a low barrier H-bond
(LBHB), an instance where the pKa values between
the donor and acceptor are matched [64]. Rejection of
the LBHB theory mainly stems from the argument
that it would provide no significant improvement
toward catalytic rate enhancement [65]. Stabilization
of the catalytic triad is mediated through a network of
additional H-bonds provided by several highly con-
served amino acid residues surrounding the triad,
particularly Thr54, Ala56 and Ser214.
A reaction pathway involving two tetrahedral inter-
mediates is applied in the serine peptidase catalyzed
hydrolysis of a peptide bond. Initially, the hydroxyl O
atom of Ser195 attacks the carbonyl of the peptide
substrate as a result of His57 in the catalytic triad
acting as a general base [66, 67]. The oxyanion
tetrahedral intermediate is stabilized by the backbone
N atoms of Gly193 and Ser195, which generate a
positively charged pocket within the active site known
as the oxyanion hole. H-bonding interactions in the
oxyanion hole contribute between 1.5 and 3.0 kcal/
mol to ground and transition state stabilization [68].
Collapse of the tetrahedral intermediate generates the
acyl-enzyme intermediate and stabilization of the
newly created N terminus is mediated by His57.
Hartley and Kilbey [69] provided evidence for an
acyl-enzyme intermediate in 1954. In these initial
experiments, a pre-steady state burst of product
correctly identified that a bond to a hydroxyl moiety
within chymotrypsin was involved in the reaction
mechanism. In the second half of the mechanism, a
water molecule displaces the free polypeptide frag-

ment and attacks the acyl-enzyme intermediate.
Again, the oxyanion hole stabilizes the second tetra-
hedral intermediate of the pathway and collapse of
this intermediate liberates a new C terminus in the
substrate.
Activation of many chymotrypsin-like serine pepti-
dases requires proteolytic processing of an inactive
zymogen precursor protein [70]. Cleavage of the
proprotein precursor occurs at the identical position in
all known members of the family, i.e., between
residues 15 and 16 (chymotrypsin numbering). The
nascent N terminus induces conformational change in
the enzyme through formation of an intramolecular
electrostatic interaction with Asp194 to stabilize both
the oxyanion hole and substrate-binding site [71, 72].
Stabilization of the active state of the enzyme is
commonly mediated by three disulfide bonds, yet five
or six are also commonly observed. Zymogen activa-
tion provides a powerful regulatory mechanism that
endows temporal control over peptidase activity, an
ability to escape premature enzyme inhibition, and
places these enzymes within the context of chains of
proteolytic events. These properties derive from the
structure of the chymotrypsin fold and combine to
produce proteolytic networks responsible for key
biological processes responsible for human health.
The S1 peptidase fold is remarkable for the even
distribution of catalytic residues across the entire
polypeptide sequence. Two six-stranded b-barrels
come together asymmetrically to host at their inter-
face the residues of the catalytic triad. Two residues of
the triad are donated from the N-terminal b-barrel
with the nucleophilic Ser and oxyanion hole generated
from the C-terminal b-barrel [73]. b-strand topology
of the fold clearly evidences the classical Greek-key
architecture (Fig. 8). However, superimposition of the
b-strand topology of the barrels reveals how the
underlying polypeptide sequence run in opposing
directions with respect to their N to C termini. As
such, the two barrels are symmetry related in protein
fold space. Both barrels are functionally partitioned
with one end involved in catalysis and a second in
regulation. The active site lies in the cleft between
them. Eight surface exposed loops in the protein
define the active site face of the chymotrypsin fold. Six
loops arise from one side of the topology diagram and
wrap around the structure from the back of the
molecule. The eight loops are arranged on the
partitioned barrels in a symmetrical orientation
whose axis revolves about two members of the
catalytic triad, His57 and Ser195. The uncanny
symmetry that underpins the highly successful Clan
PA fold is not present in any other serine peptidase or
the most abundant cysteine proteases (Fig. 9), all of
which catalyze hydrolysis of a peptide bond via an SN2
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known for its role in regulation of blood pressure
through the kinin system [84]. Granzymes are medi-
ators of directed apoptosis by natural killer cells and
cytotoxic T cells that play key roles in the defense
against viral infection [85]. Notably, unique amongst
clan PA peptidases is the primary selectivity of
granzymes towards acidic residues in the P1 position
of substrate. Of the wide diversity of proteases in clan
PA family S1, the mediator of immunity and blood
coagulation have been particularly well studied.
Pronounced expansion of the S1 peptidases in the
metazoan lineage suggests a selective advantage
relative to all other peptidase folds. Features that
emerge out of the S1 peptidase fold and may have
stimulated diversification of the family are: transition
state stabilization, on/off regulation, allostery and
associated protein domains. Proteases involved in the
immune response and blood coagulation are partic-
ularly informative toward each of these aspects and
thrombin offers a prototypic and best studied exam-
ple.

Thrombin: The prototypic allosteric protease

Recent studies have stressed the importance of
allostery as an intrinsic property of all dynamic
proteins [86], encompassing numerous examples of
monomeric proteins such as thrombin. Proteins that
exist in multiple states in dynamic equilibrium tend to
show large conformational transitions linked to ligand
binding or substrate catalysis. In the classical example
of hemoglobin allostery, the initial shift in the F8 His
near the heme upon O2 binding triggers a cascade of
structural changes that alter the interaction within and
between the a and b chains leading to the T to R
transition [87]. Similarly, large scale allosteric changes
are observed in multimeric proteins like aspartate
transcarbamylase [88], the nicotinic receptor [89] or
GroEL [90]. Evidence of long-range communication
in smaller monomeric proteins is more difficult to
obtain [86], but notable successes have been docu-
mented recently [91 – 93] and thrombin is one of the
most compelling examples [94 – 97].
Thrombin differs from the majority of peptidases due
to the ability to change substrate specificity on the
basis of cofactor interactions [98]. Homologous pep-
tidases to thrombin, whose platonic form is embodied
by the digestive enzyme trypsin, possess a fairly non-
selective active site and lack significant allostery. In
turn, most of these peptidases are restricted to simple
“on” or “off” states determined by zymogen activa-
tion and localized by their associated domains. It is
currently unknown whether associated protein do-
mains influence the protease domain in any S1

peptidase. However, it is entirely likely that such a
scenario exists. In many proteins, the dominant role of
the N-terminal protein domains is thought to position
the protease active site and as a side effect bind
substrate. Thrombin, like other blood coagulation
proteases, combines the commonly observed zymo-
gen-activation process and associated protein do-
mains with a multiplicity of intermolecular interac-
tions mediated by the protease domain itself. A similar
trend of exosite rather than active site dependency for
substrate recognition and selectivity is ubiquitous
amongst peptidases irrespective of catalytic class or
fold [73, 99]. In thrombin, exosite-mediated interac-
tions are accentuated such that opposing biological
outcomes, procoagulant and anticoagulant, become
possible within the same scaffold.
Two pathways of allosteric regulation exist in throm-
bin: one involves the Na+ site and the other involves
exosite I (Fig. 10). Both sites are>15 � away from the
active site and >25 � away from each other, yet
engage in important linked interactions [98, 100 –
103]. Binding of Na+ to thrombin enhances activity
toward procoagulant and prothrombotic substrates
like fibrinogen and PAR1 [104, 105], whereas binding
of the endothelial receptor thrombomodulin to exo-
site I precludes binding of fibrinogen or PAR1 and
enhances activity toward the anticoagulant protein C
[106, 107]. Structural details on these physiologically
important mechanisms of allosteric regulation have
begun to emerge. The structure of thrombin bound to
a fragment of thrombomodulin at exosite I failed to
reveal significant conformational changes in the active
site [108]. Such changes might have been obliterated
by the presence of the active site inhibitor used in the
crystallization. A number of peptides targeting exosite
I influence allosterically the active site of thrombin,
and bring about significant changes in activity and
even substrate specificity [100, 109– 112]. One of
these peptides, hirugen, is derived from the C-terminal
fragment of the potent natural inhibitor hirudin. The
structure of thrombin bound to hirugen was solved
with the active site free [113], but again failed to reveal
any significant conformational changes, as for the
thrombomodulin-bound structure [108]. However, a
recent structure of murine thrombin bound to a
fragment of PAR3 at exosite I reveals a snapshot of
the mechanism for the allosteric communication in
terms of a shift in the indole ring of Trp60d and upward
movement of the entire 60-loop that open up the
active site cleft [95]. The resulting facilitated diffusion
of substrate into the active site produces an enhance-
ment of kcat/Km as found experimentally [100].
Thrombomodulin binding to exosite I may open the
active site fully, as shown in the thrombin-PAR3
structure, and produce the large change in the rate of

1230 M. J. Page and E. Di Cera Serine peptidases







information or enzymes isolated from another genetic
approach such as gene expression and devoid of
biochemical description or structure and function
studies. Central to progress in the field is substrate and
biological context identification of all peptidases in a
given degradome with particular focus on human
samples for therapeutic benefit [142]. Multiple high-
throughput techniques have been developed that
apply the selectivity and time-effective nature of
mass spectrometry. Despite these enabling technolo-
gies, difficult work remains ahead to validate sub-
strates and place them in a spatial and temporal
context that is biologically relevant. Continued effort
in this arena aims to enable data mining approaches
that will allow for a computational description of
peptidase function on a genomic scale. Abundance of
serine peptidases in the human genome underscores
their importance in pathological conditions and value
as therapeutic targets. One message that spans pro-
tease fold and family is that the highly conserved
nature of any peptidase active site and its relatives
severely restricts the applicability of small molecule
therapeutics targeting the protease active site. Devel-
opment of inhibitors that rely on allosteric modifica-
tion and engagement of larger surface area of the
peptidases are an emerging issue in next generation
therapeutics [143]. Such work requires a deeper
understanding of the underlying allosteric networks
within each protease fold.
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