- 2THF, 1B7X, 1THP
Unexpected crucial role of residue 225 in serine proteases. Guinto et al (1999) Proc Natl Acad Sci USA 96, 1852-1857. - 1MHO
Crystal structure of the anticoagulant slow form of thrombin. Pineda et al (2002) J Biol Chem 277, 40177-40180. - 1SGI, 1SHH, 1SG8, 1SFQ
Molecular dissection of Na+ binding to thrombin. Pineda et al (2004) J Biol Chem 279, 31842-31853. - 1TQ0, 1TQ7
The anticoagulant thrombin mutant W215A/E217A has a collapsed primary specificity pocket. Pineda et al (2004) J Biol Chem 279, 39824-39828. - 1TWX
Crystal structure of the thrombin mutant D221A/D222K: The Asp222:Arg187 ion-pair stabilizes the fast form. Pineda et al (2004) Biophys Chem 112, 253-256. - 1T31, 1T32
A novel, potent dual inhibitor of the leukocyte proteases cathepsin G and chymase: molecular mechanisms and anti-inflammatory activity in vivo. de Garavilla et al (2005) J Biol Chem 280, 18001-18007. - 1Z8I, 1Z8J
Energetic and structural consequences of perturbing Gly-193 in the oxyanion hole of serine proteases. Bobofchak et al (2005) J Biol Chem 280, 25644-25650. - 2A0Q
Thrombin functions through its RGD sequence in a non-canonical conformation. Papaconstantinou et al (2005) J Biol Chem 280, 29393-29396. - 2FMJ
Conversion of trypsin into a Na+-activated enzyme. Page et al (2006) Biochemistry 45, 2987-2993. - 2GP9
Crystal structure of thrombin in a self-inhibited conformation. Pineda et al (2006) J Biol Chem 281, 32922-32928. - 2HWL
Crystal structure of thrombin in complex with fibrinogen gamma’ peptide. Pineda et al (2007) Biophys Chem 125, 556-559. - 2HVX
Discovery of potent, selective, orally active, nonpeptide inhibitors of human mast cell chymase. Greco et al (2007) J Med Chem 50, 1527-1530. - 2OCV, 2OD3
Structural basis of Na+ activation mimicry in murine thrombin. Marino et al (2007) J Biol Chem 282, 16355-16361. - 2PUX, 2PV9
Crystal structures of murine thrombin in complex with the extracellular fragments of protease-activated receptors PAR3 and PAR4. Bah et al (2007) Proc Natl Acad Sci USA 104, 11603-11608. - 2PGB, 2PGQ
Important role of the Cys-191:Cys-220 disulfide bond in thrombin function and allostery. Bush-Pelc et al (2007) J Biol Chem 282, 27165-27170. - 3BEI, 3BEF
Structural identification of the pathway of long-range communication in an allosteric enzyme. Gandhi et al (2008) Proc Natl Acad Sci USA 105, 1832-1837. - 3BEU
Engineering protein allostery: 1.05 A resolution structure and enzymatic properties of a Na+-activated trypsin. Page et al (2008) J Mol Biol 378, 666-672. - 3BV9
Thrombostatin FM compounds: direct thrombin inhibitors – mechanism of action in vitro and in vivo. Nieman et al (2008) J Thromb Haemost 6, 837-845. - 3E6P
Na+ binding to meizothrombin desF1. Papaconstantinou et al (2008) Cell Mol Life Sci 65, 3688-3697. - 3GIC
Stabilization of the E* form turns thrombin into an anticoagulant. Bah et al (2009) J Biol Chem 284, 20034-20040. - 3HK3, 3HK6, 3HKI, 3HKJ, 3EDX, 3EE0
Mechanism of the anticoagulant activity of the thrombin mutant W215A/E217A. Gandhi et al (2009) J Biol Chem 284, 24098-24105. - 3JZ1, 3JZ2
The mutant N143P reveals how Na+ activates thrombin. Niu et al (2009) J Biol Chem 284, 36175-36185. - 3LU9
Crystal structure of thrombin bound to the uncleaved extracellular fragment of PAR1. Gandhi et al (2010) J Biol Chem 285, 15393-15398. - 3I77, 3I78
Combinatorial enzyme design probes allostery and cooperativity in the trypsin fold. Page MJ and Di Cera E (2010) J Mol Biol 399, 306-319. - 3MVT
The role of Zn2+ on the structure and stability of murine adenosine deaminase. Niu et al (2010) J Phys Chem B 114, 16156-16165. - 3NXP
Crystal structure of prethrombin-1. Chen et al (2010) Proc Natl Acad Sci U S A 107, 19278-19283. - 3QDZ
Structural basis of thrombin-PAR interactions. Gandhi et al (2011) IUBMB Life 63, 375-382. - 3QGN, 3S7H, 3S7K
Crystallographic and kinetic evidence of allostery in a trypsin-like protease. Niu et al (2011) Biochemistry 50, 6301-6307. - 3R3G
Rigidification of the autolysis loop enhances Na+ binding to thrombin. Pozzi et al (2011) Biophys Chem 159, 6-13. - 3SQE, 3SQH
Crystal structures of prethrombin-2 reveal alternative conformations under identical solution conditions and the mechanism of zymogen activation. Pozzi et al (2011) Biochemistry 50, 10195-10202. - 4DT7
Exposure of R169 controls protein C activation and autoactivation. Pozzi et al (2012) Blood 120, 664-670. - 4H6T, 4RN6, 4H6S, 4HFP
Autoactivation of thrombin precursors. Pozzi N et al. (2013) J Biol Chem, 288, 11601-11610. - 4HZH
Crystal structure of prothrombin reveals conformational flexibility and mechanism of action. Pozzi N et al. (2013) J Biol Chem, 288, 22734-22744. - 4MLF
Essential role of conformational selection in ligand binding. Vogt AD et al. (2014) Biophys Chem. 186, 13-21. - 4NZQ, 4O03
The linker connecting the two kringles plays a key role in prothrombin activation. Pozzi N et al. (2014) Proc Natl Acad Sci USA. 111, 7630-7635. - 4RKJ, 4RKO
Why ser and not thr brokers catalysis in the trypsin fold. Pelc L et al. (2015) Biochemistry. 54, 1457-1464. - 5EDK
How the linker connecting the two Kringles influences activation and conformational plasticity of prothrombin. Pozzi N et al. (2016) J Biol Chem. 291, 6071-6082. - 5EDM
Structural architecture of prothrombin in solution revealed by single molecule spectroscopy. Pozzi N et al. (2016) J Biol Chem. 291, 18107-18116. - 5JDU
Loop electrostatics asymmetry modulates the preexisting conformational equilibrium in thrombin. Pozzi N et al. (2016) Biochemistry. 55, 3984-3994. - 5TO3
Rational design of protein C activators. Barranco-Medina S et al. (2017) Sci Rep. 7, 44596-44597. - 5IPZ
Intrinsic thermodynamics of high affinity inhibitor binding to recombinant human carbonic anhydrase IV. Mickeviciute A et al. (2017) Eur Biophys. 47, 271-290. - 6BJR, 6C2W
Structure of prothrombin in the closed form reveals new details on the mechanism of activation. Chinnaraj et al. (2018) Sci Rep 8, 2945. - 6P9U
Residues W215, E217 and E192 control the allosteric E*-E equilibrium of thrombin. Pelc LA et al. (2019) Sci Rep 9, 12304. - 6PXJ, 6PXQ
Role of the I16-D194 ionic interaction in the trypsin fold. Stojanovski BM et al. (2019) Sci Rep 9, 18035. - 7KVE, 7KXY
Cryo-EM structures of human coagulation factors V and Va. Ruben EA et al. (2021) Blood. 137, 3137-3144. - 7SR9
The active site region plays a critical role in Na+ binding to thrombin. Pelc LA et al. (2021) J Biol Chem. 298, 101458. - 7TPQ, 7TPP, EMPIAR-11615, EMPIAR-12201
Cryo-EM structure of the prothrombin-prothrombinase complex. Ruben EA et al. (2022) Blood. 139, 3463-3473. - 8FDG
Cryo-EM structure of coagulation factor V short. Mohammed BM et al. (2024) Blood. 141, 3215-3225. - 8TN9, EMPIAR-11761
Structural architecture of the acidic region of the B domain of coagulation factor V. Mohammed BM et al. (2024) J Thromb Haemost. 22, 709-714. - 9CTH, EMPIAR-12201
StThe prothrombin-prothrombinase interaction. Stojanovski BM et al. (2024) Subcell Biochem. 104, 409-423.