RNA-mediated ribonucleoprotein assembly controls TDP-43 nuclear retention
Dos Passos PM, Hemamali EH, Mamede LD, Hayes LR and Ayala YM
RNA-mediated ribonucleoprotein assembly controls TDP-43 nuclear retention
Dos Passos PM, Hemamali EH, Mamede LD, Hayes LR and Ayala YM
TDP-43 is an essential RNA-binding protein strongly implicated in the pathogenesis of neurodegenerative disorders characterized by cytoplasmic aggregates and loss of nuclear TDP-43. The protein shuttles between nucleus and cytoplasm, yet maintaining predominantly nuclear TDP-43 localization is important for TDP-43 function and for inhibiting cytoplasmic aggregation. We previously demonstrated that specific RNA binding mediates TDP-43 self-assembly and biomolecular condensation, requiring multivalent interactions via N- and C-terminal domains. Here, we show that these complexes play a key role in TDP-43 nuclear retention. TDP-43 forms macromolecular complexes with a wide range of size distribution in cells and we find that defects in RNA binding or inter-domain interactions, including phase separation, impair the assembly of the largest species. Our findings suggest that recruitment into these macromolecular complexes prevents cytoplasmic egress of TDP-43 in a size-dependent manner. Our observations uncover fundamental mechanisms controlling TDP-43 cellular homeostasis, whereby regulation of RNA-mediated self-assembly modulates TDP-43 nucleocytoplasmic distribution. Moreover, these findings highlight pathways that may be implicated in TDP-43 proteinopathies and identify potential therapeutic targets.
Finding a chaperone for TDP-43
Ayala YM and Grese ZR
Finding a chaperone for TDP-43
Ayala YM and Grese ZR
Specific RNA interactions promote TDP-43 multivalent phase separation and maintain liquid properties
Grese ZR, Bastos AC, Mamede LD, French RL, Miller TM and Ayala YM
Specific RNA interactions promote TDP-43 multivalent phase separation and maintain liquid properties
Grese ZR, Bastos AC, Mamede LD, French RL, Miller TM and Ayala YM
TDP-43 is an RNA-binding protein that forms ribonucleoprotein condensates via liquid-liquid phase separation (LLPS) and regulates gene expression through specific RNA interactions. Loss of TDP-43 protein homeostasis and dysfunction are tied to neurodegenerative disorders, mainly amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Alterations of TDP-43 LLPS properties may be linked to protein aggregation. However, the mechanisms regulating TDP-43 LLPS are ill-defined, particularly how TDP-43 association with specific RNA targets regulates TDP-43 condensation remains unclear. We show that RNA binding strongly promotes TDP-43 LLPS through sequence-specific interactions. RNA-driven condensation increases with the number of adjacent TDP-43-binding sites and is also mediated by multivalent interactions involving the amino and carboxy-terminal TDP-43 domains. The physiological relevance of RNA-driven TDP-43 condensation is supported by similar observations in mammalian cellular lysate. Importantly, we find that TDP-43-RNA association maintains liquid-like properties of the condensates, which are disrupted in the presence of ALS-linked TDP-43 mutations. Altogether, RNA binding plays a central role in modulating TDP-43 condensation while maintaining protein solubility, and defects in this RNA-mediated activity may underpin TDP-43-associated pathogenesis.
RNA-Based Therapies for Neurodegenerative Diseases
Ayala YM and Nguyen AD
RNA-Based Therapies for Neurodegenerative Diseases
Ayala YM and Nguyen AD
Most neurodegenerative disorders afflict the ageing population and are often incurable. Therefore, therapeutic development is a major focus in biomedical research. We highlight a new class of drugs, RNA molecules, to control gene expression and decrease neurotoxicity. Their efficacy is shown in pre-clinical studies, clinical trials and in cases of approved patient treatment. As the number of RNA-based strategies increases, so does the promise of targeting more disease-associated genes through a variety of different mechanisms.
TDP-43 Oligomerization and Phase Separation Properties Are Necessary for Autoregulation
Koehler LC, Grese ZR, Bastos ACS, Mamede LD, Heyduk T and Ayala YM
TDP-43 Oligomerization and Phase Separation Properties Are Necessary for Autoregulation
Koehler LC, Grese ZR, Bastos ACS, Mamede LD, Heyduk T and Ayala YM
Loss of TDP-43 protein homeostasis and dysfunction, in particular TDP-43 aggregation, are tied to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 is an RNA binding protein tightly controlling its own expression levels through a negative feedback loop, involving TDP-43 recruitment to the 3′ untranslated region of its own transcript. Aberrant TDP-43 expression caused by autoregulation defects are linked to TDP-43 pathology. Therefore, interactions between TDP-43 and its own transcript are crucial to prevent TDP-43 aggregation and loss of function. However, the mechanisms that mediate this interaction remain ill-defined. We find that a central RNA sequence in the 3′ UTR, which mediates TDP-43 autoregulation, increases the liquid properties of TDP-43 phase separation. Furthermore, binding to this RNA sequence induces TDP-43 condensation in human cell lysates, suggesting that this interaction promotes TDP-43 self-assembly into dynamic ribonucleoprotein granules. In agreement with these findings, our experiments show that TDP-43 oligomerization and phase separation, mediated by the amino and carboxy-terminal domains, respectively, are essential for TDP-43 autoregulation. According to our additional observations, CLIP34-associated phase separation and autoregulation may be efficiently controlled by phosphorylation of the N-terminal domain. Importantly, we find that specific ALS-associated TDP-43 mutations, mainly M337V, and a shortened TDP-43 isoform recently tied to motor neuron toxicity in ALS, disrupt the liquid properties of TDP-43-RNA condensates as well as autoregulatory function. In addition, we find that M337V decreases the cellular clearance of TDP-43 and other RNA binding proteins associated with ALS/FTD. These observations suggest that loss of liquid properties in M337V condensates strongly affects protein homeostasis. Together, this work provides evidence for the central role of TDP-43 oligomerization and liquid-liquid phase separation linked to RNA binding in autoregulation. These mechanisms may be impaired by TDP-43 disease variants and controlled by specific cellular signaling.