Seeding-competent TDP-43 persists in human patient and mouse muscle
Lynch EM, Pittman S, Daw J, Ikenaga C, Chen S, Dhavale DD, Jackrel ME, Ayala YM, Kotzbauer P, Ly CV, Pestronk A, Lloyd TE and Weihl CC
Seeding-competent TDP-43 persists in human patient and mouse muscle
Lynch EM, Pittman S, Daw J, Ikenaga C, Chen S, Dhavale DD, Jackrel ME, Ayala YM, Kotzbauer P, Ly CV, Pestronk A, Lloyd TE and Weihl CC
TAR DNA binding protein 43 (TDP-43) is an RNA binding protein that accumulates as aggregates in the central nervous systems of some patients with neurodegenerative diseases. However, TDP-43 aggregation is also a sensitive and specific pathologic feature found in a family of degenerative muscle diseases termed inclusion body myopathy. TDP-43 aggregates from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia brain lysates may serve as self-templating aggregate seeds in vitro and in vivo, supporting a prion-like spread from cell to cell. Whether a similar process occurs in patient muscle is not clear. We developed a mouse model of inducible, muscle-specific cytoplasmic localized TDP-43. These mice develop muscle weakness with robust accumulation of insoluble and phosphorylated sarcoplasmic TDP-43, leading to eosinophilic inclusions, altered proteostasis, and changes in TDP-43-related RNA processing that resolve with the removal of doxycycline. Skeletal muscle lysates from these mice also have seeding-competent TDP-43, as determined by a FRET-based biosensor, that persists for weeks upon resolution of TDP-43 aggregate pathology. Human muscle biopsies with TDP-43 pathology also contain TDP-43 aggregate seeds. Using lysates from muscle biopsies of patients with sporadic inclusion body myositis (IBM), immune-mediated necrotizing myopathy (IMNM), and ALS, we found that TDP-43 seeding capacity was specific to IBM. TDP-43 seeding capacity anticorrelated with TDP-43 aggregate and vacuole abundance. These data support that TDP-43 aggregate seeds are present in IBM skeletal muscle and represent a unique TDP-43 pathogenic species not previously appreciated in human muscle disease.
Depletion of Mettl3 in cholinergic neurons causes adult-onset neuromuscular degeneration
Dermentzaki G, Furlan M, Tanaka I, Leonardi T, Rinchetti P, Passos PMS, Bastos A, Ayala YM, Hanna JH, Przedborski S, Bonanomi D, Pelizzola M and Lotti F
Depletion of Mettl3 in cholinergic neurons causes adult-onset neuromuscular degeneration
Dermentzaki G, Furlan M, Tanaka I, Leonardi T, Rinchetti P, Passos PMS, Bastos A, Ayala YM, Hanna JH, Przedborski S, Bonanomi D, Pelizzola M and Lotti F
Motor neuron (MN) demise is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Post-transcriptional gene regulation can control RNA’s fate, and defects in RNA processing are critical determinants of MN degeneration. N-methyladenosine (mA) is a post-transcriptional RNA modification that controls diverse aspects of RNA metabolism. To assess the mA requirement in MNs, we depleted the mA methyltransferase-like 3 (METTL3) in cells and mice. METTL3 depletion in embryonic stem cell-derived MNs has profound and selective effects on survival and neurite outgrowth. Mice with cholinergic neuron-specific METTL3 depletion display a progressive decline in motor behavior, accompanied by MN loss and muscle denervation, culminating in paralysis and death. Reader proteins convey mA effects, and their silencing phenocopies METTL3 depletion. Among the mA targets, we identified transactive response DNA-binding protein 43 (TDP-43) and discovered that its expression is under epitranscriptomic control. Thus, impaired mA signaling disrupts MN homeostasis and triggers neurodegeneration conceivably through TDP-43 deregulation.
RNA-mediated ribonucleoprotein assembly controls TDP-43 nuclear retention
Dos Passos PM, Hemamali EH, Mamede LD, Hayes LR and Ayala YM
RNA-mediated ribonucleoprotein assembly controls TDP-43 nuclear retention
Dos Passos PM, Hemamali EH, Mamede LD, Hayes LR and Ayala YM
TDP-43 is an essential RNA-binding protein strongly implicated in the pathogenesis of neurodegenerative disorders characterized by cytoplasmic aggregates and loss of nuclear TDP-43. The protein shuttles between nucleus and cytoplasm, yet maintaining predominantly nuclear TDP-43 localization is important for TDP-43 function and for inhibiting cytoplasmic aggregation. We previously demonstrated that specific RNA binding mediates TDP-43 self-assembly and biomolecular condensation, requiring multivalent interactions via N- and C-terminal domains. Here, we show that these complexes play a key role in TDP-43 nuclear retention. TDP-43 forms macromolecular complexes with a wide range of size distribution in cells and we find that defects in RNA binding or inter-domain interactions, including phase separation, impair the assembly of the largest species. Our findings suggest that recruitment into these macromolecular complexes prevents cytoplasmic egress of TDP-43 in a size-dependent manner. Our observations uncover fundamental mechanisms controlling TDP-43 cellular homeostasis, whereby regulation of RNA-mediated self-assembly modulates TDP-43 nucleocytoplasmic distribution. Moreover, these findings highlight pathways that may be implicated in TDP-43 proteinopathies and identify potential therapeutic targets.
Finding a chaperone for TDP-43
Ayala YM and Grese ZR
Finding a chaperone for TDP-43
Ayala YM and Grese ZR
Uncovering Critical Roles for RNA in Neurodegeneration
Ayala YM
Uncovering Critical Roles for RNA in Neurodegeneration
Ayala YM
RNA-binding proteins, in particular TDP-43, are key players in neurodegenerative disorders, mainly amyotrophic lateral sclerosis and frontotemporal dementia. We aim to elucidate how TDP-43 dysfunction alters cell metabolism and to identify mechanisms linked to aberrant behavior. We find that RNA binding plays a key role in maintaining TDP-43 homeostasis and in controlling cellular organization, two processes of essential importance to TDP-43 pathology. This research will provide insight into pathogenesis and help develop therapeutic interventions.