Michelle Brennan, Ph.D.
Assistant Research Professor & Director, Genomics Core Facility
Single-cell genomics and bioinformatics services for genome-wide research.
Research Interests
The Genomics Core Facility offers the following services:
Single-cell Sequencing Technologies:- 3" scRNAseq
- Single cell immune profiling
- Fixed RNA single cell gene expression Flex
- scATACseq
- scMultiome
- Qubit fluorimeter to quantify RNA and DNA concentrations
- Agilent Bioanalyzer to quantify and measure size distribution of RNA and DNA
- Help with data processing
- Custom anaylsis for most genomic data
- Assistance with figure generaton and GEO data uploads
Recent Publications
UNVEILING CANCER-RELATED METAPLASTIC CELLS IN BOTH HELICOBACTER PYLORI INFECTION AND AUTOIMMUNE GASTRITIS
UNVEILING CANCER-RELATED METAPLASTIC CELLS IN BOTH HELICOBACTER PYLORI INFECTION AND AUTOIMMUNE GASTRITIS
Gastric metaplasia may arise as a consequence of chronic inflammation and is associated with an increased risk of gastric cancer development. While Helicobacter pylori (Hp) infection and autoimmune gastritis (AIG) both induce gastric metaplasia, possible distinctions in resulting metaplastic cells and their respective cancer risks requires further investigation.
T-Cell Expression of CXCL13 is Associated with Immunotherapy Response in a Sex-Dependent Manner in Patients with Lung Cancer
T-Cell Expression of CXCL13 is Associated with Immunotherapy Response in a Sex-Dependent Manner in Patients with Lung Cancer
Emerging evidence in preclinical models demonstrates that antitumor immunity is not equivalent between males and females. However, more investigation in patients and across a wider range of cancer types is needed to fully understand sex as a variable in tumor immune responses. We investigated differences in T-cell responses between male and female patients with lung cancer by performing sex-based analysis of single cell transcriptomic datasets. We found that the transcript encoding CXC motif chemokine ligand 13 (CXCL13), which has recently been shown to correlate with T-cell tumor specificity, is expressed at greater levels in T cells isolated from female compared with male patients. Furthermore, increased CXCL13 expression was associated with response to PD1-targeting immunotherapy in female but not male patients. These findings suggest that there are sex-based differences in T-cell function required for response to anti-PD1 therapy in lung cancer that may need to be considered during patient treatment decisions. See related Spotlight by Cruz-Hinojoza and Stromnes, p. 952.
Momordicine-I Suppresses Head and Neck Cancer Growth by Reprogrammimg Immunosuppressive Effect of the Tumor-Infiltrating Macrophages and B Lymphocytes
Momordicine-I Suppresses Head and Neck Cancer Growth by Reprogrammimg Immunosuppressive Effect of the Tumor-Infiltrating Macrophages and B Lymphocytes
Head and neck cancer (HNC) is prevalent worldwide, and treatment options are limited. Momordicine-I (M-I), a natural component from bitter melon, shows antitumor activity against these cancers, but its mechanism of action, especially in the tumor microenvironment (TME), remains unclear. In this study, we establish that M-I reduces HNC tumor growth in two different immunocompetent mouse models using MOC2 and SCC VII cells. We demonstrate that the anticancer activity results from modulating several molecules in the monocyte/macrophage clusters in CD45+ populations in MOC2 tumors by single-cell RNA sequencing. Tumor-associated macrophages (TAM) often pose a barrier to antitumor effects, but following M-I treatment, we observe a significant reduction in the expression of Sfln4, a myeloid cell differentiation factor, and Cxcl3, a neutrophil chemoattractant, in the monocyte/macrophage populations. We further find that the macrophages must be in close contact with the tumor cells to inhibit Sfln4 and Cxcl3, suggesting that these TAMs are impacted by M-I treatment. Coculturing macrophages with tumor cells shows inhibition of Agr1 expression following M-I treatment, which is indicative of switching from M2 to M1 phenotype. Furthermore, the total B-cell population in M-I-treated tumors is significantly lower, whereas spleen cells also show similar results when cocultured with MOC2 cells. M-I treatment also inhibits PD1, PD-L1, and FoxP3 expression in tumors. Collectively, these results uncover the potential mechanism of M-I by modulating immune cells, and this new insight can help to develop M-I as a promising candidate to treat HNCs, either alone or as adjuvant therapy.
The chromatin landscape of healthy and injured cell types in the human kidney
The chromatin landscape of healthy and injured cell types in the human kidney
There is a need to define regions of gene activation or repression that control human kidney cells in states of health, injury, and repair to understand the molecular pathogenesis of kidney disease and design therapeutic strategies. Comprehensive integration of gene expression with epigenetic features that define regulatory elements remains a significant challenge. We measure dual single nucleus RNA expression and chromatin accessibility, DNA methylation, and H3K27ac, H3K4me1, H3K4me3, and H3K27me3 histone modifications to decipher the chromatin landscape and gene regulation of the kidney in reference and adaptive injury states. We establish a spatially-anchored epigenomic atlas to define the kidney’s active, silent, and regulatory accessible chromatin regions across the genome. Using this atlas, we note distinct control of adaptive injury in different epithelial cell types. A proximal tubule cell transcription factor network of ELF3, KLF6, and KLF10 regulates the transition between health and injury, while in thick ascending limb cells this transition is regulated by NR2F1. Further, combined perturbation of ELF3, KLF6, and KLF10 distinguishes two adaptive proximal tubular cell subtypes, one of which manifested a repair trajectory after knockout. This atlas will serve as a foundation to facilitate targeted cell-specific therapeutics by reprogramming gene regulatory networks.
Single-cell analysis of peripheral CD8 T cell responses in patients receiving checkpoint blockade immunotherapy for cancer
Single-cell analysis of peripheral CD8 T cell responses in patients receiving checkpoint blockade immunotherapy for cancer
Checkpoint blockade immunotherapy has become a first-line treatment option for cancer patients, with success in increasingly diverse cancer types. Still, many patients do not experience durable responses and the reasons for clinical success versus failure remain largely undefined. Investigation of immune responses within the tumor microenvironment can be highly informative but access to tumor tissue is not always available, highlighting the need to identify biomarkers in the blood that correlate with clinical success. Here, we used single-cell RNA sequencing coupled with T cell receptor sequencing to define CD8 T cell responses in peripheral blood of two patients with melanoma before and after immunotherapy with either anti-PD-1 (nivolumab) alone or the combination of anti-PD-1 and CTLA-4 (ipilimumab). Both treatment regimens increased transcripts associated with cytolytic effector function and decreased transcripts associated with naive T cells. These responses were further evaluated at the protein level and extended to a total of 53 patients with various cancer types. Unexpectedly, the induction of CD8 T cell responses associated with cytolytic function was variable and did not predict therapeutic success in this larger patient cohort. Rather, a decrease in the frequency of T cells with a naive-like phenotype was consistently observed after immunotherapy and correlated with prolonged patient survival. In contrast, a more detailed clonotypic analysis of emerging and expanding CD8 T cells in the blood revealed that a majority of individual T cell clones responding to immunotherapy acquired a transcriptional profile consistent with cytolytic effector function. These results suggest that responses to checkpoint blockade immunotherapy are evident and traceable in patients’ blood, with outcomes predicted by the simultaneous loss of naive-like CD8 T cells and the expansion of mostly rare and diverse cytotoxic CD8 T cell clones.