Discovery of novel N-acylpyrazoles as potent and selective thrombin inhibitors
Short KM, Estiarte MA, Pham SM, Williams DC, Igoudin L, Dash S, Sandoval N, Datta A, Pozzi N, Di Cera E and Kita DB
Discovery of novel N-acylpyrazoles as potent and selective thrombin inhibitors
Short KM, Estiarte MA, Pham SM, Williams DC, Igoudin L, Dash S, Sandoval N, Datta A, Pozzi N, Di Cera E and Kita DB
Direct oral anticoagulants (DOACs), which includes thrombin and factor Xa inhibitors, have emerged as the preferred therapeutics for thrombotic disorders, penetrating a market previously dominated by warfarin and heparin. This article describes the discovery and profiling of a novel series of N-acylpyrazoles, which act as selective, covalent, reversible, non-competitive inhibitors of thrombin. We describe in vitro stability issues associated with this chemotype and, importantly, demonstrate that N-acylpyrazoles successfully act in vivo as anticoagulants in basic thrombotic animal models. Crucially, this anticoagulant nature is unaccompanied by the higher bleeding risk profile that has become an undesirable characteristic of the DTIs and factor Xa inhibitors. We propose that the N-acylpyrazole chemotype shows intriguing promise as next-generation oral anticoagulants.
Comparative sequence analysis of vitamin K-dependent coagulation factors
Stojanovski BM and Di Cera E
Comparative sequence analysis of vitamin K-dependent coagulation factors
Stojanovski BM and Di Cera E
Prothrombin, protein C, and factors VII, IX, and X are vitamin K (VK)-dependent coagulation proteins that play an important role in the initiation, amplification, and subsequent attenuation of the coagulation response. Blood coagulation evolved in the common vertebrate ancestor as a specialization of the complement system and immune response, which in turn bear close evolutionary ties with developmental enzyme cascades. There is currently no comprehensive analysis of the evolutionary changes experienced by these coagulation proteins during the radiation of vertebrates and little is known about conservation of residues that are important for zymogen activation and catalysis.
Structural Basis of Sequential and Concerted Cooperativity
Morea V, Angelucci F, Tame JRH, Di Cera E and Bellelli A
Structural Basis of Sequential and Concerted Cooperativity
Morea V, Angelucci F, Tame JRH, Di Cera E and Bellelli A
Allostery is a property of biological macromolecules featuring cooperative ligand binding and regulation of ligand affinity by effectors. The definition was introduced by Monod and Jacob in 1963, and formally developed as the “concerted model” by Monod, Wyman, and Changeux in 1965. Since its inception, this model of cooperativity was seen as distinct from and not reducible to the “sequential model” originally formulated by Pauling in 1935, which was developed further by Koshland, Nemethy, and Filmer in 1966. However, it is difficult to decide which model is more appropriate from equilibrium or kinetics measurements alone. In this paper, we examine several cooperative proteins whose functional behavior, whether sequential or concerted, is established, and offer a combined approach based on functional and structural analysis. We find that isologous, mostly helical interfaces are common in cooperative proteins regardless of their mechanism. On the other hand, the relative contribution of tertiary and quaternary structural changes, as well as the asymmetry in the liganded state, may help distinguish between the two mechanisms.
Cryo-EM structures of coagulation factors
Di Cera E, Mohammed BM, Pelc LA and Stojanovski BM
Cryo-EM structures of coagulation factors
Di Cera E, Mohammed BM, Pelc LA and Stojanovski BM
A State of the Art lecture titled “Cryo-EM structures of coagulation factors” was presented at the ISTH Congress in 2022. Cryogenic electron microscopy (cryo-EM) is a revolutionary technique capable of solving the structure of high molecular weight proteins and their complexes, unlike nuclear magnetic resonance (NMR), and under conditions not biased by crystal contacts, unlike X-ray crystallography. These features are particularly relevant to the analysis of coagulation factors that are too big for NMR and often recalcitrant to X-ray investigation. Using cryo-EM, we have solved the structures of coagulation factors V and Va, prothrombinase on nanodiscs, and the prothrombin-prothrombinase complex. These structures have advanced basic knowledge in the field of thrombosis and hemostasis, especially on the function of factor V and the molecular mechanism for prothrombin activation, and set the stage for exciting new lines of investigation. Finally, we summarize relevant new data on this topic presented during the 2022 ISTH Congress.
Cryo-EM structure of the prothrombin-prothrombinase complex
Ruben EA, Summers B, Rau MJ, Fitzpatrick JAJ and Di Cera E
Cryo-EM structure of the prothrombin-prothrombinase complex
Ruben EA, Summers B, Rau MJ, Fitzpatrick JAJ and Di Cera E
The intrinsic and extrinsic pathways of the coagulation cascade converge to a common step where the prothrombinase complex, comprising the enzyme factor Xa (fXa), the cofactor fVa, Ca2+ and phospholipids, activates the zymogen prothrombin to the protease thrombin. The reaction entails cleavage at 2 sites, R271 and R320, generating the intermediates prethrombin 2 and meizothrombin, respectively. The molecular basis of these interactions that are central to hemostasis remains elusive. We solved 2 cryogenic electron microscopy (cryo-EM) structures of the fVa-fXa complex, 1 free on nanodiscs at 5.3-Å resolution and the other bound to prothrombin at near atomic 4.1-Å resolution. In the prothrombin-fVa-fXa complex, the Gla domains of fXa and prothrombin align on a plane with the C1 and C2 domains of fVa for interaction with membranes. Prothrombin and fXa emerge from this plane in curved conformations that bring their protease domains in contact with each other against the A2 domain of fVa. The 672ESTVMATRKMHDRLEPEDEE691 segment of the A2 domain closes on the protease domain of fXa like a lid to fix orientation of the active site. The 696YDYQNRL702 segment binds to prothrombin and establishes the pathway of activation by sequestering R271 against D697 and directing R320 toward the active site of fXa. The cryo-EM structure provides a molecular view of prothrombin activation along the meizothrombin pathway and suggests a mechanism for cleavage at the alternative R271 site. The findings advance our basic knowledge of a key step of coagulation and bear broad relevance to other interactions in the blood.