Myeloperoxidase-derived hypochlorous acid targets human airway epithelial plasmalogens liberating protein modifying electrophilic 2-chlorofatty aldehydes
Shakya S, Pyles KD, Albert CJ, Patel RP, McCommis KS and Ford DA
Myeloperoxidase-derived hypochlorous acid targets human airway epithelial plasmalogens liberating protein modifying electrophilic 2-chlorofatty aldehydes
Shakya S, Pyles KD, Albert CJ, Patel RP, McCommis KS and Ford DA
Neutrophil and airway epithelial cell interactions are critical in the inflammatory response to viral infections including respiratory syncytial virus, Sendai virus, and SARS-CoV-2. Airway epithelial cell dysfunction during viral infections is likely mediated by the interaction of virus and recruited neutrophils at the airway epithelial barrier. Neutrophils are key early responders to viral infection. Neutrophil myeloperoxidase catalyzes the conversion of hydrogen peroxide to hypochlorous acid (HOCl). Previous studies have shown HOCl targets host neutrophil and endothelial cell plasmalogen lipids, resulting in the production of the chlorinated lipid, 2-chlorofatty aldehyde (2-ClFALD). We have previously shown that the oxidation product of 2-ClFALD, 2-chlorofatty acid (2-ClFA) is present in bronchoalveolar lavage fluid of Sendai virus-infected mice, which likely results from the attack of the epithelial plasmalogen by neutrophil-derived HOCl. Herein, we demonstrate small airway epithelial cells contain plasmalogens enriched with oleic acid at the sn-2 position unlike endothelial cells which contain arachidonic acid enrichment at the sn-2 position of plasmalogen. We also show neutrophil-derived HOCl targets epithelial cell plasmalogens to produce 2-ClFALD. Further, proteomics and over-representation analysis using the ω-alkyne analog of the 2-ClFALD molecular species, 2-chlorohexadecanal (2-ClHDyA) showed cell adhesion molecule binding and cell-cell junction enriched categories similar to that observed previously in endothelial cells. However, in contrast to endothelial cells, proteins in distinct metabolic pathways were enriched with 2-ClFALD modification, particularly pyruvate metabolism was enriched in epithelial cells and mitochondrial pyruvate respiration was reduced. Collectively, these studies demonstrate, for the first time, a novel plasmalogen molecular species distribution in airway epithelial cells that are targeted by myeloperoxidase-derived hypochlorous acid resulting in electrophilic 2-ClFALD, which potentially modifies epithelial physiology by modifying proteins.
Sphingosine kinases regulate ER contacts with late endocytic organelles and cholesterol trafficking
Palladino END, Bernas T, Green CD, Weigel C, Singh SK, Senkal CE, Martello A, Kennelly JP, Bieberich E, Tontonoz P, Ford DA, Milstien S, Eden ER and Spiegel S
Sphingosine kinases regulate ER contacts with late endocytic organelles and cholesterol trafficking
Palladino END, Bernas T, Green CD, Weigel C, Singh SK, Senkal CE, Martello A, Kennelly JP, Bieberich E, Tontonoz P, Ford DA, Milstien S, Eden ER and Spiegel S
Membrane contact sites (MCS), close membrane apposition between organelles, are platforms for interorganellar transfer of lipids including cholesterol, regulation of lipid homeostasis, and co-ordination of endocytic trafficking. Sphingosine kinases (SphKs), two isoenzymes that phosphorylate sphingosine to the bioactive sphingosine-1-phosphate (S1P), have been implicated in endocytic trafficking. However, the physiological functions of SphKs in regulation of membrane dynamics, lipid trafficking and MCS are not known. Here, we report that deletion of SphKs decreased S1P with concomitant increases in its precursors sphingosine and ceramide, and markedly reduced endoplasmic reticulum (ER) contacts with late endocytic organelles. Expression of enzymatically active SphK1, but not catalytically inactive, rescued the deficit of these MCS. Although free cholesterol accumulated in late endocytic organelles in SphK null cells, surprisingly however, cholesterol transport to the ER was not reduced. Importantly, deletion of SphKs promoted recruitment of the ER-resident cholesterol transfer protein Aster-B (also called GRAMD1B) to the plasma membrane (PM), consistent with higher accessible cholesterol and ceramide at the PM, to facilitate cholesterol transfer from the PM to the ER. In addition, ceramide enhanced in vitro binding of the Aster-B GRAM domain to phosphatidylserine and cholesterol liposomes. Our study revealed a previously unknown role for SphKs and sphingolipid metabolites in governing diverse MCS between the ER network and late endocytic organelles versus the PM to control the movement of cholesterol between distinct cell membranes.
Endothelial Cell Protein Targeting by Myeloperoxidase-Derived 2-Chlorofatty Aldehyde
Shakya S, Herr RA, Carlson HL, Zoeller RA, Albert CJ and Ford DA
Endothelial Cell Protein Targeting by Myeloperoxidase-Derived 2-Chlorofatty Aldehyde
Shakya S, Herr RA, Carlson HL, Zoeller RA, Albert CJ and Ford DA
Neutrophils are important cellular mediators of injury and repair in diseases including ischemic heart disease, atherosclerosis, and sepsis. Myeloperoxidase-derived (MPO)-oxidants released from neutrophils are potential mediators of endothelial injury in disease. MPO-derived HOCl attacks plasmalogen phospholipid to liberate 2-chlorofatty aldehyde (2-ClFALD). Both 2-ClFALD and its oxidation product, 2-chlorofatty acid (2-ClFA), are electrophilic lipids, and both probably react with proteins through several mechanisms. In the present study, we investigate protein modification specifically by 2-ClFALD under non-reducing conditions (e.g., without stabilizing Schiff base bonds), which likely reflects nucleophilic targeting of the electrophilic chlorinated carbon. Protein modification by the ω-alkyne analog of 2-chlorohexadecanal (2-ClHDA), 2-ClHDyA, was compared to that with the ω-alkyne analog of 2-chlorohexadecanoic acid (2-ClHA), 2-ClHyA, in multiple cell lines, which demonstrated 2-ClFALD preferentially modifies proteins compared to 2-ClFA. The 2-ClHDyA modified proteins from EA.hy926 cells and human lung microvascular endothelial cells analyzed by shotgun proteomics and over-representation analysis included adherens junction, cell adhesion molecule binding, and cell substrate junction enrichment categories. It is possible that proteins in these groups may have roles in previously described 2-ClFALD-elicited endothelial barrier dysfunction.
Plasmalogen Loss in Sepsis and SARS-CoV-2 Infection
Pike DP, McGuffee RM, Geerling E, Albert CJ, Hoft DF, Shashaty MGS, Meyer NJ, Pinto AK and Ford DA
Plasmalogen Loss in Sepsis and SARS-CoV-2 Infection
Pike DP, McGuffee RM, Geerling E, Albert CJ, Hoft DF, Shashaty MGS, Meyer NJ, Pinto AK and Ford DA
Plasmalogens are plasma-borne antioxidant phospholipid species that provide protection as cellular lipid components during cellular oxidative stress. In this study we investigated plasma plasmalogen levels in human sepsis as well as in rodent models of infection. In humans, levels of multiple plasmenylethanolamine molecular species were decreased in septic patient plasma compared to control subject plasma as well as an age-aligned control subject cohort. Additionally, lysoplasmenylcholine levels were significantly decreased in septic patients compared to the control cohorts. In contrast, plasma diacyl phosphatidylethanolamine and phosphatidylcholine levels were elevated in septic patients. Lipid changes were also determined in rats subjected to cecal slurry sepsis. Plasma plasmenylcholine, plasmenylethanolamine, and lysoplasmenylcholine levels were decreased while diacyl phosphatidylethanolamine levels were increased in septic rats compared to control treated rats. Kidney levels of lysoplasmenylcholine as well as plasmenylethanolamine molecular species were decreased in septic rats. Interestingly, liver plasmenylcholine and plasmenylethanolamine levels were increased in septic rats. Since COVID-19 is associated with sepsis-like acute respiratory distress syndrome and oxidative stress, plasmalogen levels were also determined in a mouse model of COVID-19 (intranasal inoculation of K18 mice with SARS-CoV-2). 3 days following infection, lung infection was confirmed as well as cytokine expression in the lung. Multiple molecular species of lung plasmenylcholine and plasmenylethanolamine were decreased in infected mice. In contrast, the predominant lung phospholipid, dipalmitoyl phosphatidylcholine, was not decreased following SARS-CoV-2 infection. Additionally total plasmenylcholine levels were decreased in the plasma of SARS-CoV-2 infected mice. Collectively, these data demonstrate the loss of plasmalogens during both sepsis and SARS-CoV-2 infection. This study also indicates plasma plasmalogens should be considered in future studies as biomarkers of infection and as prognostic indicators for sepsis and COVID-19 outcomes.
strain-dependent lipid alterations in cocultures with endothelial cells and neutrophils modeling sepsis
Amunugama K, Pike DP and Ford DA
strain-dependent lipid alterations in cocultures with endothelial cells and neutrophils modeling sepsis
Amunugama K, Pike DP and Ford DA
Dysregulated lipid metabolism is common in infection and inflammation and is a part of the complex milieu underlying the pathophysiological sequelae of disease. Sepsis is a major cause of mortality and morbidity in the world and is characterized by an exaggerated host response to an infection. Metabolic changes, including alterations in lipid metabolism, likely are important in sepsis pathophysiology. Here, we designed an cell culture model using endothelial cells, , and neutrophils to mimic sepsis in a simplified cell model. Lipid alterations were studied in the presence of the pathogenic strain CFT073 and non-pathogenic strain JM109. We employed untargeted lipidomics to first identify lipid changes and then targeted lipidomics to confirm changes. Both unique and shared lipid signatures were identified in cocultures with these strains. In the absence of neutrophils, the CFT073 strain elicited alterations in lysophosphatidylcholine and diglyceride molecular species during coculture while both strains led to increases in phosphatidylglycerols. Lipid alterations in these cocultures changed with the addition of neutrophils. In the presence of neutrophils with and endothelial cells, triglyceride increases were a unique response to the CFT073 strain while phosphatidylglycerol and diglyceride increases occurred in response to both strains. Phosphatidylethanolamine also increased in neutrophils, and endothelial cells cocultures, and this response was greater in the presence of the CFT073 strain. We further evaluated changes in phosphatidylethanolamine in a rat model of sepsis, which showed multiple plasma phosphatidylethanolamine molecular species were elevated shortly after the induction of sepsis. Collectively, these findings demonstrate unique lipid responses by co-cultures of with endothelial cells which are dependent on the strain as well as the presence of neutrophils. Furthermore, increases in phosphatidylethanolamine levels in CFT073 urosepsis , endothelial cell, neutrophil cocultures were similarly observed in the plasma of septic rats.