
Ewa Heyduk, Ph.D.
Adjunct Research Professor
Recent Publications
Peptide ligand-based ELISA reagents for antibody detection
Peptide ligand-based ELISA reagents for antibody detection
Detection of specific antibodies has numerous research, therapeutic and diagnostic applications. Short peptide ligands that bind specifically to antibodies with continuous epitopes can be derived from epitope mapping experiments. Short peptide ligands (mimotopes) specific to antibodies with discontinuous epitopes can be identified by screening complex peptide libraries. In an effort to enhance practical utility of such peptide ligands, we describe here a simple approach to turn such target antibody-specific peptide ligands into specific ELISA detection reagents. We show that a simple addition of biotinylated peptide ligands to commonly available horseradish peroxidase (HRP)-labeled streptavidin (or HRP-anti-biotin antibody), or digoxigenin-labeled peptides to HRP-anti-digoxigenin antibody detection reagents transformed these generic detection reagents into sensitive target antibody-specific reagents. ELISA assays performed using these reagents exhibited excellent analytical properties indicating their practical utility for antibody detection. One generic detection reagent can be readily transformed into many different specific ELISA reagents by a simple mix and match design using an appropriate target-specific peptide ligand. Simplicity of preparation of these ELISA reagents for detecting antibodies should facilitate their practical applications.
DNA template sequence control of bacterial RNA polymerase escape from the promoter
DNA template sequence control of bacterial RNA polymerase escape from the promoter
Promoter escape involves breaking of the favourable contacts between RNA polymerase (RNAP) and the promoter to allow transition to an elongation complex. The sequence of DNA template that is transcribed during promoter escape (ITS; Initially Transcribed Sequence) can affect promoter escape by mechanisms that are not yet fully understood. We employed a highly parallel strategy utilizing Next Generation Sequencing (NGS) to collect data on escape properties of thousands of ITS variants. We show that ITS controls promoter escape through a combination of position-dependent effects (most prominently, sequence-directed RNAP pausing), and position-independent effects derived from sequence encoded physical properties of the template (for example, RNA/DNA duplex stability). ITS often functions as an independent unit affecting escape in the same manner regardless of the promoter from which transcription initiates. However, in some cases, a strong dependence of ITS effects on promoter context was observed suggesting that promoters may have ‘allosteric’ abilities to modulate ITS effects. Large effects of ITS on promoter output and the observed interplay between promoter sequence and ITS effects suggests that the definition of bacterial promoter should include ITS sequence.
Next Generation Sequencing-based analysis of RNA polymerase functions
Next Generation Sequencing-based analysis of RNA polymerase functions
Next Generation Sequencing (NGS) that revolutionized genome wide studies allows analysis of complex nucleic acids mixtures containing thousands of sequences. This extraordinary analytical power of NGS can be harnessed for the analysis of in vitro experiments where DNA template sequence dependence of protein activity acting on DNA can be studied in a single reaction for thousands of DNA sequence variants. This allows a rapid accumulation of data on DNA sequence dependence of the process of interest to a depth not accessible by standard experimentation. We use an example of bacterial RNA polymerase promoter melting activity to describe the NGS-based methodology to study DNA template dependence of protein activity.
Ribosome display enhanced by next generation sequencing: a tool to identify antibody-specific peptide ligands
Ribosome display enhanced by next generation sequencing: a tool to identify antibody-specific peptide ligands
Detection of antibodies in serum has many important applications. Our goal was to develop a facile general experimental approach for identifying antibody-specific peptide ligands that could be used as the reagents for antibody detection. Our emphasis was on an approach that would allow identification of peptide ligands for antibodies in serum without the need to isolate the target antibody or to know the identity of its antigen. We combined ribosome display (RD) with the analysis of peptide libraries by next generation sequencing (NGS) of their coding RNA to facilitate identification of antibody-specific peptide ligands from random sequence peptide library. We first demonstrated, using purified antibodies, that with our approach-specific peptide ligands for antibodies with simple linear epitopes, as well as peptide mimotopes for antibodies recognizing complex epitopes, were readily identified. Inclusion of NGS analysis reduced the number of RD selection rounds that were required to identify specific ligands and facilitated discrimination between specific and spurious nonspecific sequences. We then used a model of human serum spiked with a known target antibody to develop NGS-based analysis that allowed identification of specific ligands for a target antibody in the context of an overwhelming amount of unrelated immunoglobins present in serum.
Next generation sequencing-based parallel analysis of melting kinetics of 4096 variants of a bacterial promoter
Next generation sequencing-based parallel analysis of melting kinetics of 4096 variants of a bacterial promoter
Promoter melting by bacterial RNA polymerase is a key step in transcription initiation. We used a next generation sequencing (NGS) based approach to analyze in parallel promoter melting of all 4096 sequence variants of the 6 bp -10 promoter element. We used NGS read count for each sequence of a promoter library containing a randomized -10 sequence as an observable to determine relative enrichment of -10 element sequence variants at different time points of the promoter melting reaction. The analysis reinforced the dominating role of consensus bases at positions -11 and -7, demonstrated an enhanced preference for A at -11 among sequences exhibiting the fastest melting kinetics, and showed higher overall importance of the T at -7 compared to the A at -11 for efficient promoter melting. Sequences lacking the consensus bases at -7 or -11 could still melt fast if they contained compensatory base patterns at other positions. We observed a significant correlation between the duplex melting energy of -10 element and the kinetics of promoter melting that became more pronounced when the dominating base-specific interactions with RNAP were diminished. These observations indicate that promoter melting kinetics is determined by a combination of base-specific effects/interactions and sequence-dependent stability of DNA duplex with the former playing a dominating role. Our data show that NGS can provide a reliable, quantitative readout for a highly parallel analysis of DNA template sequence dependence of activities of proteins that bind or operate on a DNA template.