Jeffrey Teckman, M.D.
Secondary Professor
Department of Pediatrics
Understanding and treatment of pediatric liver disease and treatment of general gastroenterological conditions.
Research Interests
Clinical specialty in the areas of pediatric liver disease and general gastroenterology.
Recent Publications
Sarcopenia is associated with osteopenia and impaired quality of life in children with genetic intrahepatic cholestatic liver disease
Sarcopenia is associated with osteopenia and impaired quality of life in children with genetic intrahepatic cholestatic liver disease
Sarcopenia occurs in pediatric chronic liver disease, although the prevalence and contributing factors in genetic intrahepatic cholestasis are not well-described. The objective of this study was to measure muscle mass in school-aged children with genetic intrahepatic cholestasis and assess relationships between sarcopenia, clinical variables, and outcomes.
Fazirsiran for Liver Disease Associated with Alpha-Antitrypsin Deficiency
Fazirsiran for Liver Disease Associated with Alpha-Antitrypsin Deficiency
Alpha-antitrypsin (AAT) deficiency results from carriage of a homozygous “Z” mutation (proteinase inhibitor [PI] ZZ). The Z allele produces a mutant AAT protein called Z-AAT, which accumulates in hepatocytes and can lead to progressive liver disease and fibrosis. This open-label, phase 2 trial investigated the safety and efficacy of fazirsiran, an RNA interference therapeutic, in patients with liver disease associated with AAT deficiency.
Alpha-1 Antitrypsin Deficiency Liver Disease
Alpha-1 Antitrypsin Deficiency Liver Disease
Liver disease in homozygous ZZ alpha-1 antitrypsin (AAT) deficiency occurs due to the accumulation of large quantities of AAT mutant Z protein polymers in the liver. The mutant Z protein folds improperly during biogenesis and is retained within the hepatocytes rather than appropriately secreted. These intracellular polymers trigger an injury cascade, which leads to liver injury. However, the clinical liver disease is highly variable and not all patients with this same homozygous ZZ genotype develop liver disease. Evidence suggests that genetic determinants of intracellular protein processing, among other unidentified genetic and environmental factors, likely play a role in liver disease susceptibility. Advancements made in development of new treatment strategies using siRNA technology, and other novel approaches, are promising, and multiple human liver disease trials are underway.
Nonfasted Liver Stiffness Correlates with Liver Disease Parameters and Portal Hypertension in Pediatric Cholestatic Liver Disease
Nonfasted Liver Stiffness Correlates with Liver Disease Parameters and Portal Hypertension in Pediatric Cholestatic Liver Disease
Elastographic measurement of liver stiffness is of growing importance in the assessment of liver disease. Pediatric experiences with this technique are primarily single center and limited in scope. The Childhood Liver Disease Research Network provided a unique opportunity to assess elastography in a well-characterized multi-institutional cohort. Children with biliary atresia (BA), alpha-1 antitrypsin deficiency (A1ATD), or Alagille syndrome (ALGS) followed in a prospective longitudinal network study were eligible for enrollment in a prospective investigation of transient elastography (FibroScan). Studies were performed in participants who were nonfasted and nonsedated. Liver stiffness measurements (LSMs) were correlated with standard clinical and biochemical parameters of liver disease along with a research definition of clinically evident portal hypertension (CEPH) graded as absent, possible, or definite. Between November 2016 and August 2019, 550 participants with a mean age of 8.8 years were enrolled, 458 of whom had valid LSMs (BA, n = 254; A1ATD, n = 104; ALGS, n = 100). Invalid scans were more common in participants <2 years old. There was a positive correlation between LSM and total bilirubin, international normalized ratio (INR), aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transpeptidase (GGT), GGT to platelet ratio (GPR), pediatric end-stage liver disease score, AST to platelet ratio index, and spleen size, and a negative correlation with albumin and platelet count in BA, with similar correlations for A1ATD (except AST, ALT, and albumin) and ALGS (except for INR, GGT, GPR, and ALT). Possible or definite CEPH was more common in BA compared to ALGS and A1ATD. LSM was greater in definite versus absent CEPH in all three diseases. Disease-specific clinical and biochemical characteristics of the different CEPH grades were observed. : It is feasible to obtain LSMs in children, especially over the age of 2 years. LSM correlates with liver parameters and portal hypertension, although disease-specific patterns exist.
Alpha-1 antitrypsin deficiency liver disease
Alpha-1 antitrypsin deficiency liver disease
The clinical presentation of liver disease is highly variable in homozygous ZZ alpha-1 antitrypsin (AAT) deficiency, and not all patients with the homozygous ZZ genotype develop liver disease. Although not fully identified, there is likely a strong influence of genetic and environmental modifiers of the intracellular injury cascade and fibrotic response. Most ZZ children are well and remain undiagnosed. Of those who come to medical attention, the most common pediatric presentation is neonatal cholestatic hepatitis, sometimes referred to as “neonatal hepatitis syndrome”. The gold standard for diagnosis of AAT deficiency is analysis of the AAT protein phenotype in the patient serum or the genotype of their DNA genome. Careful follow up of all diagnosed children is important. Heterozygotes for S and Z alleles of AAT (SZ) may develop progressive liver disease similar to ZZ patients and also require close monitoring. There is no specific treatment for AAT deficiency induced liver disease and current therapy remains supportive with management of complications. Rarely, patients require liver transplant and typically the patient outcomes are excellent. With improved understanding of liver injury mechanisms, new strategies for treatment are now being explored, including siRNA technology, molecules to modulate secretion, and enhancers of proteolysis.