Abdul Waheed, Ph.D.
Emeritus Research Professor
Biochemical and molecular genetics studies of human carbonic anhydrase deficiencies.
Recent Publications
Osteoarthritis year in review 2023: genetics, genomics, and epigenetics
Osteoarthritis year in review 2023: genetics, genomics, and epigenetics
To elucidate the scientific advances made in the last 12 months within the realm of osteoarthritis genetics, genomics, and epigenetics. This review paper highlights major research publications that enhance our current understanding of the role of genetics, genomics, and epigenetics in osteoarthritis.
Mitochondrial carbonic anhydrase VA and VB: properties and roles in health and disease
Mitochondrial carbonic anhydrase VA and VB: properties and roles in health and disease
Carbonic anhydrase V (CA V), a mitochondrial enzyme, was first isolated from guinea-pig liver and subsequently identified in mice and humans. Later, studies revealed that the mouse genome contains two mitochondrial CA sequences, named Car5A and Car5B. The CA VA enzyme is most highly expressed in the liver, whereas CA VB shows a broad tissue distribution. Car5A knockout mice demonstrated a predominant role for CA VA in ammonia detoxification, whereas the roles of CA VB in ureagenesis and gluconeogenesis were evident only in the absence of CA VA. Previous studies have suggested that CA VA is mainly involved in the provision of HCO for biosynthetic processes. In children, mutations in the CA5A gene led to reduced CA activity, and the enzyme was sensitive to increased temperature. The metabolic profiles of these children showed a reduced supply of HCO to the enzymes that take part in intermediary metabolism: carbamoylphosphate synthetase, pyruvate carboxylase, propionyl-CoA carboxylase and 3-methylcrotonyl-CoA carboxylase. Although the role of CA VB is still poorly understood, a recent study reported that it plays an essential role in human Sertoli cells, which sustain spermatogenesis. Metabolic disease associated with CA VA appears to be more common than other inborn errors of metabolism and responds well to treatment with N-carbamyl-l-glutamate. Therefore, early identification of hyperammonaemia will allow specific treatment with N-carbamyl-l-glutamate and prevent neurological sequelae. Carbonic anhydrase VA deficiency should therefore be considered a treatable condition in the differential diagnosis of hyperammonaemia in neonates and young children.
Carbonic anhydrases in metazoan model organisms: molecules, mechanisms, and physiology
Carbonic anhydrases in metazoan model organisms: molecules, mechanisms, and physiology
During the past three decades, mice, zebrafish, fruit flies, and have been the primary model organisms used for the study of various biological phenomena. These models have also been adopted and developed to investigate the physiological roles of carbonic anhydrases (CAs) and carbonic anhydrase-related proteins (CARPs). These proteins belong to eight CA families and are identified by Greek letters: α, β, γ, δ, ζ, η, θ, and ι. Studies using model organisms have focused on two CA families, α-CAs and β-CAs, which are expressed in both prokaryotic and eukaryotic organisms with species-specific distribution patterns and unique functions. This review covers the biological roles of CAs and CARPs in light of investigations performed in model organisms. Functional studies demonstrate that CAs are not only linked to the regulation of pH homeostasis, the classical role of CAs, but also contribute to a plethora of previously undescribed functions.
Disease-Linked Glutarylation Impairs Function and Interactions of Mitochondrial Proteins and Contributes to Mitochondrial Heterogeneity
Disease-Linked Glutarylation Impairs Function and Interactions of Mitochondrial Proteins and Contributes to Mitochondrial Heterogeneity
Lysine glutarylation (Kglu) of mitochondrial proteins is associated with glutaryl-CoA dehydrogenase (GCDH) deficiency, which impairs lysine/tryptophan degradation and causes destruction of striatal neurons during catabolic crisis with subsequent movement disability. By investigating the role of Kglu modifications in this disease, we compared the brain and liver glutarylomes of Gcdh-deficient mice. In the brain, we identified 73 Kglu sites on 37 mitochondrial proteins involved in various metabolic degradation pathways. Ultrastructural immunogold studies indicated that glutarylated proteins are heterogeneously distributed in mitochondria, which are exclusively localized in glial cells. In liver cells, all mitochondria contain Kglu-modified proteins. Glutarylation reduces the catalytic activities of the most abundant glutamate dehydrogenase (GDH) and the brain-specific carbonic anhydrase 5b and interferes with GDH-protein interactions. We propose that Kglu contributes to the functional heterogeneity of mitochondria and may metabolically adapt glial cells to the activity and metabolic demands of neighboring GCDH-deficient neurons.
Intrinsic thermodynamics of high affinity inhibitor binding to recombinant human carbonic anhydrase IV
Intrinsic thermodynamics of high affinity inhibitor binding to recombinant human carbonic anhydrase IV
Membrane-associated carbonic anhydrase (CA) isoform IV participates in carbon metabolism and pH homeostasis and is implicated in the development of eye diseases such as retinitis pigmentosa and glaucoma. A series of substituted benzenesulfonamides were designed and their binding affinity to CA IV was determined by fluorescent thermal shift assay and isothermal titration calorimetry (ITC). Compound [(4-chloro-2-phenylsulfanyl-5-sulfamoyl-benzoyl)amino]propyl acetate (19) bound CA IV with the K of 1.0 nM and exhibited significant selectivity over the remaining 11 human CA isoforms. The compound could be developed as a drug targeting CA IV. Various forms of recombinant CA IV were produced in Escherichia coli and mammalian cell cultures. Comparison of their temperature stability in various buffers and salt solutions demonstrated that CA IV is most stable at slightly alkaline conditions and at elevated sodium sulfate concentrations. High-resolution X-ray crystallographic structures of ortho-Cl and meta-thiazole-substituted benzene sulfonamide in complex with CA IV revealed the position of and interactions between the ligand and the protein. Sulfonamide inhibitor binding to CA IV is linked to several reactions-the deprotonation of the sulfonamide amino group, the protonation of CA-Zn(II)-bound hydroxide at the active site of CA IV, and the compensating reactions of the buffer. The dissection of binding-linked reactions yielded the intrinsic thermodynamic parameters, characterizing the interaction between CA IV and the sulfonamides in the binding-able protonation forms, including Gibbs energy, enthalpy, and entropy, that could be used for the characterization of binding to any CA in the process of drug design.