Tinghai Xu, Ph.D.
Assistant Professor
Mechanistic understanding of DNA methylation, histone modification, and chromatin remodeling.
Research Interests
Our research focuses on investigation of the relationship between DNA methylation, histone modifications, and chromatin remodeling using structural and cell biology methods to provide fundamental insights for therapeutic manipulation of DNA methylation in human disease and structure-based drug discovery.
Our research focuses on three important topics:- DNA methyltransferase and nucleosome complexes
- Remodeler-mediated DNA methylation on chromatin
- Chromatin-associated protein complexes
Recent Publications
Hotspot Cancer Mutation Impairs KAT8-mediated Nucleosomal Histone Acetylation
Hotspot Cancer Mutation Impairs KAT8-mediated Nucleosomal Histone Acetylation
KAT8 is an evolutionarily conserved lysine acetyltransferase that catalyzes histone acetylation at H4K16 or H4K5 and H4K8 through distinct protein complexes. It plays a pivotal role in male X chromosome dosage compensation in Drosophila and is implicated in the regulation of diverse cellular processes in mammals. Mutations and dysregulation of KAT8 have been reported in human neurodevelopmental disorders and various cancers. However, the precise mechanisms by which these mutations disrupt KAT8’s normal function, leading to disease pathogenesis, remain largely unknown. In this study, we focus on a hotspot missense cancer mutation, the R98W point mutation within the Tudor-knot domain. Our study reveals that the R98W mutation leads to a reduction in global H4K16ac levels in cells and downregulates the expression of target genes. Mechanistically, we demonstrate that R98 is essential for KAT8-mediated acetylation of nucleosomal histones by modulating substrate accessibility.
DNA strand asymmetry generated by CpG hemimethylation has opposing effects on CTCF binding
DNA strand asymmetry generated by CpG hemimethylation has opposing effects on CTCF binding
CpG methylation generally occurs on both DNA strands and is essential for mammalian development and differentiation. Until recently, hemimethylation, in which only one strand is methylated, was considered to be simply a transitory state generated during DNA synthesis. The discovery that a subset of CCCTC-binding factor (CTCF) binding sites is heritably hemimethylated suggests that hemimethylation might have an unknown biological function. Here we show that the binding of CTCF is profoundly altered by which DNA strand is methylated and by the specific CTCF binding motif. CpG methylation on the motif strand can inhibit CTCF binding by up to 7-fold, whereas methylation on the opposite strand can stimulate binding by up to 4-fold. Thus, hemimethylation can alter binding by up to 28-fold in a strand-specific manner. The mechanism for sensing methylation on the opposite strand requires two critical residues, V454 and S364, within CTCF zinc fingers 7 and 4. Similar to methylation, CpG hydroxymethylation on the motif strand can inhibit CTCF binding by up to 4-fold. However, hydroxymethylation on the opposite strand removes the stimulatory effect. Strand-specific methylation states may therefore provide a mechanism to explain the transient and dynamic nature of CTCF-mediated chromatin interactions.
Structure of an AMPK complex in an inactive, ATP-bound state
Structure of an AMPK complex in an inactive, ATP-bound state
Adenosine monophosphate (AMP)-activated protein kinase (AMPK) regulates metabolism in response to the cellular energy states. Under energy stress, AMP stabilizes the active AMPK conformation, in which the kinase activation loop (AL) is protected from protein phosphatases, thus keeping the AL in its active, phosphorylated state. At low AMP:ATP (adenosine triphosphate) ratios, ATP inhibits AMPK by increasing AL dynamics and accessibility. We developed conformation-specific antibodies to trap ATP-bound AMPK in a fully inactive, dynamic state and determined its structure at 3.5-angstrom resolution using cryo-electron microscopy. A 180° rotation and 100-angstrom displacement of the kinase domain fully exposes the AL. On the basis of the structure and supporting biophysical data, we propose a multistep mechanism explaining how adenine nucleotides and pharmacological agonists modulate AMPK activity by altering AL phosphorylation and accessibility.
Structural insights into the human D1 and D2 dopamine receptor signaling complexes
Structural insights into the human D1 and D2 dopamine receptor signaling complexes
The D1- and D2-dopamine receptors (D1R and D2R), which signal through G and G, respectively, represent the principal stimulatory and inhibitory dopamine receptors in the central nervous system. D1R and D2R also represent the main therapeutic targets for Parkinson’s disease, schizophrenia, and many other neuropsychiatric disorders, and insight into their signaling is essential for understanding both therapeutic and side effects of dopaminergic drugs. Here, we report four cryoelectron microscopy (cryo-EM) structures of D1R-G and D2R-G signaling complexes with selective and non-selective dopamine agonists, including two currently used anti-Parkinson’s disease drugs, apomorphine and bromocriptine. These structures, together with mutagenesis studies, reveal the conserved binding mode of dopamine agonists, the unique pocket topology underlying ligand selectivity, the conformational changes in receptor activation, and potential structural determinants for G protein-coupling selectivity. These results provide both a molecular understanding of dopamine signaling and multiple structural templates for drug design targeting the dopaminergic system.
Structure of nucleosome-bound DNA methyltransferases DNMT3A and DNMT3B
Structure of nucleosome-bound DNA methyltransferases DNMT3A and DNMT3B
CpG methylation by de novo DNA methyltransferases (DNMTs) 3A and 3B is essential for mammalian development and differentiation and is frequently dysregulated in cancer. These two DNMTs preferentially bind to nucleosomes, yet cannot methylate the DNA wrapped around the nucleosome core, and they favour the methylation of linker DNA at positioned nucleosomes. Here we present the cryo-electron microscopy structure of a ternary complex of catalytically competent DNMT3A2, the catalytically inactive accessory subunit DNMT3B3 and a nucleosome core particle flanked by linker DNA. The catalytic-like domain of the accessory DNMT3B3 binds to the acidic patch of the nucleosome core, which orients the binding of DNMT3A2 to the linker DNA. The steric constraints of this arrangement suggest that nucleosomal DNA must be moved relative to the nucleosome core for de novo methylation to occur.